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Abstract: An estimate is derived for the Jacobi polynomial Cesaro summation 

kernel of arbitrary positive order. This is used to show that the supremum of the 

Cesaro summation operators is weak type (p,p) at the lower critical value of p 

and weak restricted type at the upper critical value. An immediate consequence is 

the convergence almost everywhere of the Cesaro summation operator for functions 

in Lp for the lower critical value of p. It is also shown that the supremum of 

the Cesaro summation operators is not weak type at the upper critical value and 

not strong restricted type at the lower critical value. For p not between the 

critical values the growth of the p norm of the Cesaro mean operator is 

determined. 

Key words: Jacobi polynomial series, Cesaro means, Weak type estimates, maximal 

Cesaro summation operator. 

Work supported in part by NSF grants DMS-8803493 for the first author and 
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1. Introduction. The principal results of this paper concern norm estimates for 

Tf(x) = s u p l ^ ' ^ ' V * ) ! , where (r[a'®'$(t,x) is the n t h Cesaro mean of order 
n>0 n n 

6 > 0 for the Jacobi polynomial expansion with parameters a > -1 and 0 > -1 

of f(x). Let 7 = max(a,/?). At the lower critical value of p, 

max(27?2fl.i_3 » *)> w e s n o w t n a t T i s w e a k t v P e (P»P)- F o r 0 < 7 + i , at 

the upper critical value of p, / ] 1 ^ '^ we show that T is weak restricted 

type (p,p). This is also true for 0 = 7 + - provided 2 < p < OD. For 

0 > 7 + j we also show that T is strong type (OD,OD). These, of course, imply 

that T is strong type (p,p) for p between these values. We also show that at 

the lower critical value T is not strong restricted type (p,p) and at the upper 

critical value T is not weak type (p,p). 

Previous related results include the statement by Askey and Wainger on page 

483 of [3] that cr a '™' (f,x) is strong type (p,p) if p lies between the critical 

values, a > -1/2 and 0 > -1/2. Bonami and Clerc in theorem (6.4), page 255 of 

[4], showed that T is bounded for p between the critical values provided 

a = 0 > -1/2. Their statement includes the critical values, but this is clearly a 

misprint. Their proof does not include these values and Askey and Hirschman in 

theorem 4c, p. 173 of [2], show the unboundedness of T at these values. This is 

also shown in theorems (21.1) and (21.2). 

Our principal results are obtained from an accurate estimate of the Cesaro 

kernel obtained here for all 6 > 0, a > -1 and 0 > - 1 . This is derived in 

§§3-14; the estimate is stated in §14 in various forms. This estimate has many 

applications besides the weak type results mentioned above. These include new 

simple proofs of the summability theorems 9.1.3 and 9.1.4 of [13]. The summability 

Received by the editor February 15, 1991 and in revised form October 22, 1991. 
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2 SAGUN CHANILLO AND BENJAMIN MUCKENHOUPT 

results in [2], [3] and [4] are immediate consequences of theorems (1.1), (1.2) and 

(1.3) with less restriction on the parameters; they can also be proved directly from 

our kernel estimate without interpolation. Weighted norm inequalities for Cesaro 

sums of Jacobi series, including ones that cannot be proved by interpolation, can 

also be proved easily using the kernel estimates. 

The main results are proved in §§ 15-17. As usual it is easier to prove norm 

inequalities by changing the variables x and y of the Cesaro summation kernel 

to cos s and cos t and taking the function to be 0 on half the interval. 

This approach is used to obtain norm inequalities for the supremum of the Cesaro 

sum operators in §15 and §16 at the lower and upper critical values respectively. 

The final forms, theorems (1.1)—(1.3) are then proved in §17. 

In §§18-20 we derive results needed to estimate upper and lower bounds of 

the p norm of Cesaro means for p not between the critical values. These are 

used in §21 to prove that sup | | ^ a ' ^ ' (f,x)|| at the upper critical p and 
II ' ip"~ 

sup \\a^a^^ (XE>X)IL a t t n e l ° w e r critical p are unbounded functions of n. 

An obvious question remains as to whether sup ||<x|: '' (XE>X)IID *S bounded 

at the upper critical p. We conjecture that it is but observe in §21 why this 

cannot be proved from an upper bound for the kernel. 

Finally, in §22 we use the results of §§18-21 to obtain upper and lower 

bounds for sup ||^' ' (f>x)|L &r P not between the critical values. This 

improves a result of Gorlich and Markett [8] by giving upper bounds that are 

constant multiples of the lower bounds and being valid for a larger range of the 

parameters. 

Our main results are the following. 
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Theorem (1.1). If a > - 1 , /? > - 1 , 7 = max(a,/J), 0 > 0, 

p = max(l > 2 7 + ^ + 3 ) ' a > ° anc* E ( a ) i s t h e subset oi [-1,1] where 

sup I a^a'P'y (f,x)| > a} then there is a constant c, independent of f and a such 
n>0 n 

that 

f {1-xf (1+x)^ dx < ± \ | f (x ) | p ( l -x ) a ( l - fx / dx. 
JE(a) ap ^ 

Theorem (1.2). If a > - 1 , /? > - 1 , 7 = max(a,/?), 0 < 0 < 7 + 1 / 2 , 

P = 2 ^ 2 g+1 ' a > °' H c H-*1] a nd E ( a ) i s t n e subset of [-1,1] where 

sup I <7^a '^' (XTJ,X)| > a, then there is a constant c, independent of H and a, 
n>0 n n n 

such that 

f ( l - x ) a ( l + x y dx < -5- f ( l - x ^ l + x ) ^ dx. 
jE(a) â  H 

This is also true if 0 < 6 = 7 + 1/2 and 2 < p < OD. 

The following simple result completes theorem (1.2). 

Theorem (1.3). If a > - 1 , 0 > - 1 , 7 = max(a,/?), 0>O and 

9 > 7 + 1/2, then there is a constant c, independent of f, such that 

| | s up | a n
a ^^ ( f , x ) | | | < c||f(x)|| 

n>0 n * " 

where || || is the essential supremum on [-1,1]. 

The following convergence theorem is a consequence of theorem (1.1) and 

proposition 6.2, p. 95, of [14]. 
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Theorem (1.4). If a > - 1 , 0 > - 1 , 7 = max(a,/J), 0 > 0, 

p = max(l , 2 7 20+3) a n d l ^ ( x ) l P ( 1 ~ x ) a ( 1 + x ) dx < QD, then for almost every 
- 1 

x in [-1,1], l i m <r( a '# ' t f(f ,x) = f(x). 
n->ro 

Given our estimate of the kernel, the proofs of theorems (1.1), (1.2) and (1.3) 

in §§15-17 are straightforward, being based primarily on Holder's inequality and 

Hardy's inequality. An interesting extension of Holder's inequality, lemma (16.5) is 

needed to prove theorem (1.2); this lemma is valid when the functions are powers of 

x times characteristic functions. The proofs are long, however, because the 

estimate of the kernel used is a sum of eleven parts and each part is treated 

separately. 

More complicated is the derivation of the estimate for the kernel. This is 

done in §§3-14. The result is stated in theorem (14.1) and in alternate forms in 

corollaries (14.2) and (14.7). The most troublesome case for arguments (cos s, 

cos t) with 0 < t < s/2 and 1/n < s < TT/2 is treated in §§3-8. It might 

appear that a high order asymptotic formula like (2.15) could be used for this. 

This fails because essential cancellation is provided by p l a , " ' ( c o s t) for k 

between 1/s and 1/t while the error term for P£ a , ^ ' ( cos t) is larger than the 

principal term for k in this range. The procedure used is an inductive one using 

summation by parts. This is complicated for several reasons. First, the obvious 

way to sum by parts is to sum one polynomial times a suitable function of k and 

to difference the rest. This can be done but the result is no easier to estimate 

than the original. The procedure used here is to sum the product of the poly

nomials times a suitable function of k and to difference the rest. Unfortunately, 

there is no simple closed form expression for the sum after the first summation by 

parts, so asymptotic expansions must be used. In addition, to make the induction 
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work the sum has to be re-expressed using an identity that leads to more terms 

and another asymptotic expansion. High order asymptotic expansions are needed to 

obtain error terms small enough that suitable estimates can be obtained without 

using cancellation. The basic summation by parts procedure is contained in §6. 

Another complication of the estimation for 0 < t < s/2 and 1/n < s < 7r/2 

is that the summation by parts procedure reduces the order of summation 6 in 

some terms and introduces negative powers of k+1 in others. Consequently, the 

starting point for the induction consists of two parts: one for sums with large 

negative powers of k+1 given in §3 and the other for sums with -1 < 6 < 0 

given in §5. The estimation in §3 is a straightforward estimation of a sum of 

absolute values, but in §5 the cancellation of terms is still essential and requires 

another summation by parts result proved in §4. The induction argument is given 

in §7; this produces a general result which is used to obtain the Cesaro sum 

estimate for this case in §8. 

The case |s- t | > a > 0 is treated in §§9-12. this is again an inductive 

proof using summation by parts but simpler than §§3-8. This case is needed for 

the last estimate in theorem (14.1) as well as filling in the case 7r/2 < s < 37r/4 

in the second estimate. 

For s/2 < t < s-2/n an asymptotic formula (2.15) of Darboux is used. This 

is done in §13. The proof of theorem (14.1) is completed in §14 by proving the 

estimate for a few simple cases. The alternate statements, corollaries (14.2) and 

(14.7) are also proved there. 

For readers familiar with a result of Gilbert, theorem 1, p. 497 of [7], the 

method used here to prove theorems (1.1)—(1.3) may appear unnecessarily 

complicated. Gilbert's result produces weak and strong type norm inequalities for 
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operators associated with various orthogonal expansions from the same norm 

inequality for the corresponding operator for trigonometric expansions. His proof is 

based on the fact that an easily obtained estimate K(x,y) of the difference of the 

kernels of the two operators has the property that Tf(x) = K(x,y)f(y)dy is 

strong type (p,p) for 1 < p < ao on [-7r,x] with weight function 1. This does 

not work here, however, because, as shown at the ends of §§15 and 16, Tf is not 

a weak type operator for the weight functions and values of p used. 

The upper bounds for sup H^ ' ' (f>x)|L in §18 are also a 
II lip 

straightforward derivation from the kernel estimate of theorem (14.1). The lemmas 

in §§19-20 are modification of results in [2] and the proofs are similar to those in 

[2]. The theorems in §§21-22 follow easily from the rest of the paper. 

2. Facts and definitions. For a and (3 real and n a nonnegative 

integer 

m=0 

is the usual Jacobi polynomial. Define 

(2.1) ^a'̂ (s) = t ^M^t cos s)(sin s/2) a + 1 / 2 (cos s / 2 ) ^ 1 / 2 

where 
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For a > - 1 , /? > - 1 , the functions tyj®' '(s) are orthonormal on [0,7r] by 

(4.3.3) of [13]. Given a nonnegative integer J and a fixed integer d, the definition 

(2.2) shows that there are real numbers c , 1 < j < J, independent of n such 

that for n > max(0, - d ) 

J - l 
(2.3) ilk® " I c j(n+l)^1/2| < Cj(n+1)-J+l/2. 

j=0 

From (4.1.3) of [13] we have 

(2.4) PJia,/?)(-x) = H ) n P<A a ) (x) . 

From theorem 7.32.2 of [13] and (2.4) it follows that if d is a fixed integer, a 

and 0 are fixed real numbers and n > max(0,-d), then 

(2.5) | P ( j / ) ( x ) | < c E ( ^ ) ( x ) , 

where c is independent of n and x and 

r(n+i)Q 

(2.6) >(«,/*), (x) = 

N - 2 l - ( n + l ) * < x < 1 

( n + 1 ) - l / 2 ( 1 _ x ) - a / 2 - l / 4 o < x < l - ( n + l ) - 2 

( n + i r 1 / 2 ( l + x ) ~ / ? / 2 " 1 / 4 - l + ( n + l ) - 2 < x < 0 

l(n+l)A -1 < x < - l + ( n + l ) ~ 

For a > - 1 , /3 > - 1 , the estimates of (2.5)-{2.6) can also be written in the form 
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cKn+lJx]0 *1 / 2 0 < x < l / ( n + l ) 

(2-7) l * n j / } W I < c l / ( n + l ) < x < *-l / (n+l) 

c [ (n+l ) (^-x) ]^ + 1 / 2 T - l / (n+ l ) < x < 7T 

Given a,/?,7 and 8 greater than -1 , k, u, v and J integers, J > 2 

and x and y, we define 

(2-8) Qk(x>y) = ?^t3[P( a^) ( x ) P ( 7,^)(y) _ p ( t f w & H M ] . 

Then by (3.7) of [9], we have 

f29) p ( a > % * ( ^ M - Q k ( *' y ) -Qk-l( x-y) , A k + B k 
t2-9) Pk+u WP k+v W ~ (k+l)(x-y) + ^E=y- • 

where A, is a sum of terms of the form 

(210) T^yi p^wpUv^) 
with U = u or u-1, V = v or v-1, 2 < j < J-l and a,b and c 

independent of n,x and y and 

(2.11) |B k | < c(k+l)-J EJ>>%) E^'fyy). 

By (6.9)-(6.11) of [9], Qk(x,y) equals the sum of 

( 2 1 2 ) - (2k + 3^2kH-a^ + 2u+ 2) p £ « + 1 . 0 ( x ) P ( 7 > \ ) ( 1 - x ) , 

(213) ( 2 k + 3 l } ^ : Z t ) + 2 V + 2 ) ^ W P [ ^ U V ) ( l - y ) 

and 
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(2.14) 2k+3 a __ 7 
k+u+1 k+v+1 'ilinwil;%). 

We will need an asymptotic formula of Darboux, (39) p. 44 of [6] in the 

following form. There are functions u.(x), 1 < i < 4, independent of n and 

analytic on [0,7r] and a constant c, independent of n and x such that 

(2.15) ^ ( ^ ( ^ - [ u ^ ^ + ^ — l c o s n x - ^ W + J J i ^ c o s t n x 

< 
[n s inxj 

We will need the summation by parts formula 

(2.16) 
n n—1 

I a k A b k = a n b n + r ambm " 5 b k + l A a k > 
k=m k=m 

where Ac, = c, , , -c , and the following lemma proved by taking 
n 

b k = I " c k i n(2-16). 

Lemma (2.17). If a, is nonnegative and increasing and m < n, then 

n 

i 
k=m 

akck < a max 
m< j<n k=j 

J h The n orthonormalized Cesaro kernel of order 0 is defined by 

(2.18) 
An k=0 

where A* = (n +*) for n > 0 and 6 > - 1 . In particular A * = 0 for 
n v n ' - - r n 
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—1 9 n > 0 and An = 1. We will use the fact that A > 0 for n > 0 and u n -
9 > - 1 . For fixed 9 > - 1 , the sequence A is monotone in n, increasing if 

9 > 0 and decreasing if 9 < 0. For all 9 we have 

(2.19) A; < c(n+l)° 

with c independent of n, and for 9 > -1 we have 

(2.20) (n+1)^ < c A^ 

with c independent of n. Also needed is 

(2.21) Af - Af.x = A ^ 1 

and the summed version of (2.21) 

n 
9 _ A 0+1 ( 2 2 2) I K = An 

k=0 

By (4.5.2) of [13] we have 

«(.,!)»( « ^ 

where 

(2.24) o<8,t) = (sin s/2 sin t /2) a + 1 / 2(cos s/2 cos t / 2 ) ^ 1 / 2 , 

for any J > 0 
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-1 
(2.25) u[a^ = 2 + J djfn+ljJ + 0((n+l)"J) 

j= l -J 

with d- independent of n, x = cos s, y = cos t and Q as defined in (2.8) 

with 7 = a, 6 — 0 and u = v = 0. Using (2.16) with a, = A , and 

bk = K [ ^ ' ° ( s , t ) , we see that 

(2.26) K ( ^ % , t ) = ^ I Ag K ^ ° ( B > t ) . 
An k=0 

Although most of our estimates and proofs will use K^ a ' ^ 5 (s,t) we will 

make some use of the basic Cesaro kernel 

(227) L ( ^ ' i y ) - - 4 y V k p k w p k (y) 
( } n ( , y ) " ^ k£0 i ; p ^ ( t ) 2 ( i - t ) ^ ( i ^ d t • 

With this definition the n Cesaro mean of f, 

(2.28) ^ ' ' ( W = | V y ) L n ^ ) ^ ( x , y ) ( i - y ) a ( i + y ) / 3 dy, 
- l 

and by (4.3.3) of [13] we have the equality 

(2.29) L^a'Pj'*(cos s ,cos t ) = £TT7O irrno 
n [sin(s/2)sin(t/2) ] ^ 1 ' 2 [a>s(s /2 )cos ( t /2 ) r + 1 ' 2 

The following conventions will be used. Norms will be on [-1,1] and 

weighted so that for 1 < p < QD 
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(2.30) | | f | | p = [\ | f ( x ) | P ( l - x ) a ( l + x / d x ] ' 
|1/P 

^ x j l ^ l - x j ^ l + x ) ^ dx 

~-l 

and the weak norm 

( 2 - 3 1 ) IMIp,. sup ap f ( l -x) a ( l+x)^ dxl P , 
r>0 JF,(n\ J a>0 JE(a) 

where E(a) is the subset of [-1,1] where |f(x)| > a. The function XT?(X) is 

the function equal to 1 if x 6 E and 0 if x j( E. The letter c is used for 

positive constants not necessarily the same at each occurrence. For p satisfying 

1 < p < i , p ' = p/(p-l). An expression of the form [x] will denote the greatest 

integer less than or equal to x when the brackets have no other function. 

3. An absolute value estimate for 3(l-y) < 2(l-x). This section consists of 

the proof of lemma (3.1). This lemma is used to estimate error terms in the proofs 

of §§4, 5 and 7. 

Lemma (3.1) If a,/?, 7 and S are greater than - 1 , 0 < 3(l-y) < 

2(l-x) < 2, M = [(1-x)"1/2], n is an integer, n > M, 6 > - 1 , b > 0, t < 0 and 

t < 2b-7-l/2, then 

(3.2) ( l -y) b I ( k + t f A ^ EJ>'#(x) E^%) < c n V x ^ + T + t + l ) ^ 
k=M 

where c is independent of x, y and n. 

To prove this if n < 2M, observe that in this case (2.6) implies 

E ( a ' ^ (x ) < c M a and E ( 7 , ( 5 ) (V) < C M 7 for M < k < n. Therefore, the left 
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side of (3.2) has the bound 

c ( l - y ) b ( M + l ) t + ^ J An*_k. 
k=M 

By (2.19) we get the bound c ( l - y ) b ( M + l ) t + Q + 7 + t f + 1 . Since 0 < 1-x < 1, the 

definition of M shows that 

(3.3) (M+l)/2 < (1-x)"1/2 < M+l. 

From this we see that c ( M + l ) t + a + 7 + t f + 1 ( l - y ) b is bounded by the right side of 

(3.2). 

To prove lemma (3.1) for n > 2M, let N = min([n/2], [(1-y)""1/2]) and 

write the left side of (3.2) as the sum of 

N 
(3-4) ( l -y) b I (k+1)* A ^ k E ^ / 3 ) ( x ) E ( 7 ^ ( y ) , 

k=M 

[ n / 2 ] 
(3.5) ( l -y) b I (k+1)* A ^ k E ( ^ ) ( x ) E [ 7 ^ ) ( y ) , 

k=N+l 

and 

(3.6) (l-y)b J (k+1)4 A*_kEJ>%)E<>'%), 
k=l+[n/2] 

To estimate (3.4), use (2.6), (2.19) and the fact that (1-y) < N to get the 

bound 

k=M 
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Since t+7-2b-l/2 < - 1 , this has the bound 

c n * ( l - x r a / 2 - 1 / 4 M t + ^ 2 b + 1 / 2 . 

By (3.3) we see that this is bounded by the right side of (3.2). 

To estimate (3.5), note first that it contains no terms if [n/2] = N; we may 

assume, therefore, that 

(3.7) N = [(l-y) '1 /2] < [n/2]. 

Now use (2.6) and (2.19) to show that (3.5) is bounded by 

(3.8) c n V - x r a / 2 - 1 / 4 ( l - y ) b " 7 / 2 - 1 / 4 ^ (k+1)1-1. 
k=N+l 

Since t < 0, the sum has the bound c(N+2) . By (3.7) and the fact that 

0 < (1-y) < 1, we have 

(l-y)~"1/2 < N+2 < 3(l-y)"1 /2 . 

Therefore, (3.8) is bounded by 

(3.9) c n ^_ x ) - a /2 - l / 4 ( 1 _ y ) b- (7+ t+ l /2 ) /2 

Finally, since the exponent of (1-y) is positive, we can replace (1-y) by (1-x). 

This produces the estimate for (3.5). 

For (3.6) we use (2.6) to get 

c ( n + l ) t - 1 / 2 ( l - x r a / 2 - 1 / 4 ( l - y ) b
 E M ( y ) J A*_k . 

k=[n/2]+l 
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By (2.22) and (2.19), this is bounded by 

(3.10) c ( n + l ) t + ^ 1 / 2 ( l - x ) - a / 2 " 1 / 4 ( l - y ) b E ^ ^ ) ( y ) . 

If (1-y)"1/2 > n, then (3.10) is bounded by 

c ( n + l ) ^ t + ^ 2 b + 1 / 2 ( l - x r t t / 2 - 1 / 4 

Since t+7~2b+l/2 < 0 and n+1 > (1-x) - ' , we can replace 
( n + l ) t + ^ 2 b + 1 / 2 by (l_x)b"(t+7+l/2)/2 a n d g e t ^ r i g h t g i d e Q{ ( 3 2 ) I f 

(1-y)"1 /2 < n, then (3.10) is 

c ( n + l ) t + ^ ( l - x ) - a / 2 - 1 / 4 ( l - y ) b ^ / 2 - 1 / 4 

Since t < 0, we can replace (n+1) by (l-y)~ ' . This gives (3.9), and, as 

shown when estimating (3.5), we have (3.9) bounded by the right side of (3.1). 

This completes the proof of lemma (3.1). 

4. A basic estimate for 3(l-y) < 2(l-x). To obtain Cesaro sum estimates, 

we will first need a fact about sums of products of polynomials. This is contained 

in lemma (4.1); the rest of this section is the proof of this lemma. 

Lemma (4.1). If a, /?, 7 and 5 are greater than - 1 , 

0 < 3(l-y) < 2(l~x) < 2, j , n, u and v are integers, t is real and 

l/(2>/I:^c) < j < n, then 

k=j 
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has the bound 

(4.3) c ( l - x ) - " / 2 - 3 / 4 max (M)^/2^%)9 
j<k<n 

where c is independent of j , n, x and y. 

To prove this, use (2.9) with J = 2 to show that (4.2) is bounded by the 

sum of 

(4.4) I - 5 ^ - ^ (k+1)1 1 

k=j 

and 

(4.5) c I - 5 _ _ k ( k + 1 ) t 2 

k=j 

To estimate (4.5), use (2.6) and the fact that 

(4.6) y-x = (1-x) - (1-y) > (l-x)/3 

to get the bound 

c ( 1_x )-"/2-5/4 J ( k + 1 ) t -5 /2E (>,*) ( y ) . 

k=j 

This is bounded by 

c ( 1 _ x ) - « / 2 - 5 / 4 r m a x ( k + 1 ) t - i / 2 E ( 7 , 5 ) ( y ) | y ( k + 1 ) - 2 . 
Lj<k<n J ^ . 

Since 1/j < 2/L-x } the sum is less than Cy/T-x. and we get the bound (4.3). 

To estimate (4.4), use (2.16) to show that (4.4) is bounded by the sum of 

(4.7) ^ n + l ) t - 1 | Q n ( x , y ) | + ^ j + l ) t - 1 | Q . _ 1 ( x , y ) | 
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and 

n - 1 
(4-8) ^ | I Qk(x,y)A(k+l)t-1|. 

k=j 

To estimate (4.7) and (4.8) we shall use the fact that Q, (x,y) is the sum of 

(2.12)-(2.14). For k > l/(2yT=oc) , the quantity (2.12) equals 

(4.9) c ( l - x ) ( k + l ) p ( j + ^ W < > ^ ( y ) + O ^ V r V w ] , 

and the absolute value of (2.12) is bounded by 

(4.10) c ( l - x ) - a / 2 + 1 / 4 (k+ l ) 1 / 2 E(T^(y ) . 

The absolute value of the sum of (2.13) and (2.14) is bounded by 

(4.11) c ( k + l ) 1 / 2 ( l - x ) - a / 2 - 1 / 4 ( l - y ) E ( ^ 1 ^ ) ( y ) + c ( k + l ) - 1 / 2 ( l - x ) - a / 2 - 1 / 4 E ( 7 ^ ( y ) . 

From (2.6) it follows that 

(4.12) EJ>+1'*)(y) < - L . E^%). 

Using this and the inequalities <JT-y < fi-x. and (k+l)~~ < y^-^, we see that 

(4.11) also has the bound (4.10). Therefore, 

(4.13) |Qk(x,y)| < c ( l -x ) - a / 2 + 1 / 4 (k+ l ) 1 / 2 E( 7 , 5 ) (y ) -

Using (4.6) and (4.13) in (4.7) immediately gives the estimate (4.3). For (4.8) 

we consider the cases j > l/vT-y and n < l/v^-y ; the case j < l/y/T-y < n 

then follows by adding the estimate for the sum from j to [l/^l-y ] to the 

estimate for the sum from [1/^1-y ] + 1 to n. 
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For the case j > l/y/T-y , we use (4.6), (4.13) and (2.6) to show that (4.8) is 

bounded by 

c n I ( l - x r Q / 2 - 3 / 4 ( l - y ) ^ / 2 - 1 / 4 A ( k + l ) t - 1 . 

k=j 

This has the bound 

c ( 1 _ x r / 2 - 3 / 4 ( 1 _ y ) - 7 / 2 - l / 4 j ( n + 1 ) t - l + ( j + 1 ) t - l J 

and by (2.6) this is bounded by (4.3). 

To estimate (4.8) for n < l / / t -y , consider first the case 7+t ^ 1/2. For 

this use (4.6) and (4.13) in (4.8); then use (2.6) and the fact that 

|A(k+l ) t _ 1 | < c (k+l ) t - 2 to get 

c
nj ( i -xr^ /Vi f^ 3 / 2 

By (2.6) this is bounded by (4.3). Finally, to estimate (4.8) if n < 1/vT^ and 

7+t = 1/2, use (2.6) and the fact that 1-y < (k+l)~2 to show that (4.11) has 

the bound 

cdc+ir^a-xr*/2-1/4. 

Since the error term in (4.9) also has this bound, we see, using (4.6), that (4.8) is 

bounded by the sum of 

(4.14) c I I P ^ + 1 ^ ( x ) p [ ^ / ) ( y ) ( k + l ) A ( k + l ) t - 1 | 
k=j 

and 
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(4.i5) c i ( k + i ^ - s / V x ) - ^ 2 " 5 / 4 . 
k=j 

For (4.14), write A(k+l) t _ 1 = c(k+l) t _ 2 + 0((k+l) t _ 3) . This shows that (4.14) 

is bounded by the sum of 

(4.i6) c| I (k+if-hi^{xyp^%)\ 

and (4.15). Since 7+t- l = -1/2 f 1/2, the case already proved shows that (4.16) 

is bounded by 

c ( l - x ) - a / 2 - 5 / 4 max (k+l ) t - 3 / 2 (k+l )T 
j<k<n 

Since 7+t-3/2 = - 1 , the maximum occurs at k = j and the estimate is 

(4.17) c ( l - x ) - a / 2 - 5 / 4 ( j + l ) t + ^ 3 / 2 , 

Since (l-x)~ ' < j+1 we have the bound 

c ( 1 _ x ) - a / 2 - 3 / 4 ( j + 1 ) t + ? - l / 2 

which is bounded by (4.3). For (4.15) the exponent of k+1 is -2, and we again 

get (4.17). Therefore (4.15) also is bounded by (4.3). This completes the proof of 

lemma (4.1). 
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5. A kernel estimate for 3(l-v) < 2(l-x) and -1 < 6 < 0. We state and 

prove here Lemma (5.1) which is an estimate for a restricted range of 6. This 

lemma is the basis of the inductive argument in §7 that removes the restriction 

6 < 0. 

Lemma (5.1). If a, /5, 7 and 6 are greater than - 1 , 

0 < 3(l-y) < 2(l-x) < 2, M = [(1-x)"1/2], n, u and v are integers, M < n, 

t < 1 and -1 < 6 < 0, then 

(«) I I ( ^ <-AlfwilvS)(y)\ 
k=M 

has the bound 
(5.3) c n ^ ( l - x ) - ( Q + ^ t + 1 ) / 2 + ^ l - x ^ ^ + ^ ^ ^ / ^ m i ^ n X l - y ) - 1 / 2 ) ] ^ ^ 1 / 2 , 

where c is independent of n, x and y. 

It should be noted that in lemma (5.1) the same proofs can be used if 

t > 1; in this case if n > (l-y)~ ' the second term in (5.3) must be replaced 

by 

c n t - 1 ( l - x ) ^ a + ^ 3 / 2 ) ( l - y ) - ( ^ 1 / 2 ) / 2 

We will, however, only need an estimate of (5.2) for t < 1. 

To prove lemma (5.1) if n < 2M, replace p j ^ ^ ( x ) and PJ^y^(y) by 

^ ix) and EJ^' ^(y) respectively. The estimation is then completed in the 

same way as the case n < 2M was done in the proof of lemma (3.1). We will, 

therefore, assume that n > 2M. The proof consists of estimating separately 
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(5.4) 

(5.5) 

and 

(5.6) 

k=M 

n-M 

k = [ n / 2 ] + l 

k=n-M+l 

To estimate (5.4), use the fact that A , is an increasing function of k 

lemma (2.17) and (2.19) to get the bound 

[n/2] 
en* ma* I J (k+1)' p( J ^ x J P ^ y ) 

; n ^ ( 1_ x ) -a /2-3/4 m a x ( k + 1 ) t - l / 2 E (7 ,^) ( y ) . 
M<k<n 

By lemma (4.1) this is bounded by 

yb.lj ^ II ^J- - •* •) AJ.ia.JV ^ f t T i j J-̂ T_ 

Now since 0 < 3(l-y) < 2, we have 1/3 < y < 1, and by (2.6) 

(5.8) E^>%) = ( k + l ) - 1 / 2 m i n ( k + l , ( l - y ) - 1 / 2 ) ^ 1 / 2 . 

Therefore, (5.7) equals 

(5.9) c n V x ) - a / 2 - 3 / 4 max ( k + l ^ m i ^ k + l ^ l - y ) - 1 / 2 ) ^ 1 / 2 . 
M<k<n 

Since t < 1, we also have 
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(5.10) (k+ l ) t _ 1 < m i ^ k + l ^ l - y ) - 1 / 2 ) ^ 1 ; 

therefore (5.9) has the bound 

(5.11) cnV-xra/2"3/4 max mi^+Ul-yy1'2)^-1/2. 
M<k<n 

Now min(k+l,(l-y)~ ' ) as a function of k on [M,n] achieves its maximum 

value at k = n and its minimum at k = M. Consequently, the maximum of 

m i ^ k + l ^ l - y r 1 / 2 ) 7 * 1 " 1 / 2 for k in [M,n] occurs at either k = M or 

k = n. If the maximum occurs at k = n, then use the fact that 0 < 0 and 

n > (1-x)"1/2 to see that n^ < (1-x)"^2 . This shows that (5.11) is bounded by 

the second term of (5.3). If the maximum occurs at k = M, then since 

M+l < 2(l-x)"1 /2 < 2(l-y)"1 /2 , we can replace mintM+l^l-y)"1 /2) by M+l 

and by (3.3) we can replace M-hl with (l-x)~ ' . This shows that (5.11) is 

bounded by the first term of (5.3) in this case and completes the proof that (5.4) is 

bounded by (5.3). 

To estimate (5.5), again use the fact that A , is an increasing function of 

k with lemma (2.17) and then use (2.19) to get the bound 

CM* max I J (k+1)1 P ^ ( x ) P ^ ^ ( y ) 
n /2< j<n -M' k l . k + u K + v 

By lemma (4.1) and (3.3) this is bounded by 

c M V x r a / 2 _ 3 / 4 max (k+l ) 1 " 1 / 2 E & ' f y y ) . 
n/2<k<n K + v 
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Using (5.8) and then (5.10) produces the bound 

cM*( l -oc r a / 2 - 3 / 4 max min(k + l , ( l - y r 1 / 2 ) 7+t - l /2 
n/2<k<n 

Now replace k+1 by n and use (3.3) to replace M by (l-x)~ ' . This 

produces the second term in (5.3) and completes the estimation of (5.5). 

For (5.6) use (2.5) and the fact that A , > 0 to get the estimate 

c n t - l / 2 ( 1 . x ) - Q / 2 - l / 4 E ( 7 , i ) ( y ) j A ^ 

k=n-M 

Now use (2.22) followed by (2.19) and (3.3) to get the bound 

c ( 1_x )-(a+*+3/2)/2n t-l /2E(7 )<5) ( y ) 

Using (5.8) to replace E ^ ' '(y) and then (5.10) shows that this is bounded by 

the second term in (5.3). This completes the proof of lemma (5.1). 

6. A reduction lemma. The estimate in §7 is proved by induction using 

summation by parts. This reduction procedure is based on the following lemma. 

Lemma (6.1). If a > - 1 , /? > - 1 , 7 > - 1 , 6 > - 1 , 9 > 0, t is real, 

-1 < x < 1, -1 < y < 1, J, m, n, u and v are integers, 0 < m < n and J > 2, 

then 

k=m 
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can be written as the sum of 

t-1 K6 W— -. ix^nm-f ij 
(6.3) 

Qm_1(x,y)(m+ i) t-1 An»_m 

y - x 

a term with absolute value bounded by 

^+1-J 

k=m 

and terms of the form 

n ' 

("> «l ^^ *M^^») 

\a/j___\b 
"y 

(6.5) (Ax+By+c)(^H.yu i (k+D^ ^:_k?i^%)Pii'y',%), 
k=m 

where n' = n or n' = n-1, |u'-u| < 1, |v ' -v | < 1, the numbers A, B and 

C are independent of m, n, x and y, i is an integer and a, b, a\ 7', 0' 

and i have a set of values shown on a line of the following table: 

a 
1 
0 
0 
1 
0 
0 

b 
0 
1 
0 
0 
1 
0 

B' 
6-1 
0-1 
9-1 
0 
0 
0 

a' 
a+1 
a 
a 

a+1 
a 
a 

7' 
7 

7+1 
7 
7 

7+1 
7 

2-J < i < 0 
2-J < i < 0 
2-J < i < -1 
2-J < i < -1 
2-J < i < -1 
2-J < i < -2 
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To prove this use (2.9) with the J of the hypotheses in (6.2) to show that 

(6.2) is the sum of 

n ( k + l ^ A * , 
(6-6) J x . y

 n"k[Qk(x?y)-Qk^(x}y)] 
k=m 

k=m 

and 

S (k+l)*A* , 

k=m 

The terms in (6.7) have the form (6.5) with values from the sixth line of the table 

if 2 < j < J-2 and have absolute value bounded by (6.4) if j = J-1 . The terms 

in (6.8) also have absolute value bounded by (6.4). To complete the proof we will 

show that (6.6) equals (6.3) plus terms of the form (6.5) and terms majorized by 

(6.4). 

To estimate (6.6) we will apply (2.16) with afc = (k+l) t _ 1A^_k and 

r̂ k = Qjc_1(x,y). This and (2.21) show that (6.6) equals the sum of 

( n + l ) t - 1 Q n ( x , y ) A ; (m+ l ) t - 1Af_mQm_ 1(x,y) 
( 6 9 ) T^ T^y ' 

, x
 n 7 l Qk(x,y)(k+i)t-1 A £ * 

(6.10) Z x - y 
k=m 

and 
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Q k ( x ' y ) m_,^ t - i n .^t-w 
n - 1 

(6-H) - I ^ ^ [ ( k + 2 ) t - M k + l ) t - 1 ] A ^ _ k _ 1 
k=m 

0 9—1 
The second part of (6.9) is (6.3). For the first part use the fact that A0 = AT~ 
and combine it with (6.10) to get 

(6.12) I -JE _ _ 2J<. 
k=m 

Now replace Q, (x,y) by the sum of (2.12)-(2.14). The coefficients in (2.12) and 
1 

(2.13) can be written in the form £ d.(k+l)J + 0((k+l)2~ J) , and the 
j=3-J 

0 
coefficient in (2.14) can be written in the form J d.(k+l)J + 0((k+l) 2" J) . 

j=3-J 
The principal term resulting from (2.12) has the form (6.5) with values from the 

first line of the table. From (2.13) we get (6.5) with values from the second line 

of the table while (2.14) produces the third line. The error term resulting from 

(2.12) is bounded by 

(6.13) ^ J ( k + l ) t + 1 - J E ( a + 1 ^ ( X ) E ^ ^ ) ( y ) A n ^ . 
k=m 

Now for k < n and 0 > 0 we have 0 < A^~£ < A^_k> This and (4.12) show 

that (6.13) is bounded by (6.4). Similarly, the error term resulting from (2.13) has 

the bound 

^ J (k+ l ) t + 1 - JE(^) ( x)E(^M) ( y ) A M . 
k=m 
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the reasoning used on (6.13) shows this also has the bound (6.4). Finally, the error 

term resulting from (2.14) has the bound 

^ l <k+i>'+1-J4*»ME^ (y )A£ 
k=m 

which is also bounded by (6.4). 

To estimate (6.11), again replace Qk(x,y) by the sum of (2.12)-(2.14). The 

product of the coefficients of (2.12) or (2.13) with (k+2)t~~1 - (k+l )*" 1 can be 

written in the form 

—1 
I dj(k+l) t+j + 0((k+l) t + 1- J); 

j=2-J 

the product of the coefficient of (2.14) with (k+2) ~ - (k+1) ~ can be written 

in the form 

- 2 
(6.14) I d j tk+ l )^ + 0 ( ( k + l ) t + W ) . 

j=2-J 

The resulting principal terms have the form (6.5) with values from lines 4, 5 and 6 

of the table. The error terms are easily seen to have the bound (6.4) by using 

(4.12). 
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7. A kernel estimate for 3(l-y) < 2(l-x) and 9 > - 1 . This section contains 

the inductive argument that extends the result of §5 to 9 > 0. The lemma to be 

proved is the following. 

Lemma (7.1). If a, /?, 7 and 6 are greater than - 1 , 

0 < 3(l-y) < 2(l-x) < 2, M = [(1-x)"1 '2], n, u and v are integers, M < n, 

t < 1 and 9 > - 1 , then (5.2) has the bound (5.3) with C independent of n, x 

and y. 

The note immediately after the statement of lemma (5.1) about an estimate 

for (5.2) if t > 1 is also valid here. As in §5, this case will not be considered. 

To prove lemma (7.1), we will show that if b > 0, a is real and the 

hypotheses of lemma (7.1) are satisfied, then 

(7.2) ( l -x) a( l -y) b | I (k+1)* ^ P ^ x J P ^ y ) ! 
k=M 

is bounded by the sum of 

(7.3) c n V x ) a + M " + 7 + t + l ) / 2 

and 

(7.4) ^ l - x ^ ^ ^ ^ ^ / ^ l - y ^ m i ^ n X l - y r 1 / 2 ) ] 7 ^ " 1 / 2 

with c independent of n, x and y. This is sufficient since taking a = b = 0 

gives the conclusion of lemma (7.1). 

To prove that (7.2) is bounded by the sum of (7.3) and (7.4), let 

T = T(t,7,b) = max([t],[t+7-2b+l/2]) and U = U(0) = [0\. We will first prove 

the result if T < -1 or U < - 1 . If T < - 1 , then t < 0 and 
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t + 7 - 2 b -f 1/2 < 0. Lemma (3.1) can be applied to show that (7.2) is bounded by 

(7.3). If U < - 1 , then 9 < 0 and by hypothesis 9 > - 1 . The desired estimate 

for (7.2) then follows from lemma (5.1) and the fact that (1-y) < (1-x) . 

For the proof when T > 0 and U > 0, define K = K(t,7,b,0) = 

T(t,7,b)+U(0). The estimation of (7.2) will be done by induction on K. If 

K < - 1 , then either T < -1 or U < -1 and the inequality has been proved. 

Therefore, assume that (7.2) is bounded by the sum of (7.3) and (7.4) if 

K(t,7,b,0) < I where I is an integer and I > - 1 , and fix t, 7, 0 and 9 such 

that K(t,7,b,0) = I-fl. If T < -1 or U < - 1 , we are done. Therefore, assume 

that T > 0 and U > 0. We will now apply lemma (6.1) to (7.2) with 

J = max(3,[t+7+5/2]). Note that since 3(l-y) < 2(l-x), we have (4.6) and 

l/(y-x) can be replaced by 3/(l-x) in the estimate produced by lemma (6.1). 

The result is that (7.2) is bounded by the sum of 

(7.5) c( l-x) a -1( l-y)b(M+l) t- 1A^_M | Q ^ C x . y ) |, 

(7.6) c ( l - * r 1 ( l - y ) b I ( k + l ) 1 " ^ 1 A f _ k E < > A x ) E ( ^ ( y ) 
k=M 

and terms of the form 

(7.7) c ( l -x ) a / ( l - y ) b / | J ( k + l ) t + U f ; _ ^ 
k=M 

where lu-u' l < 1, | v -v ' | < 1, n7 = n or n' = n-1, c is independent of x, y 

and n, j is an integer and a7, b ' , 9\ a', 7' and j have a set of values 

shown on a line in the following table: 
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a' 
a 
a-1 
a-1 
a 
a-1 
a-1 

b' 
b 
b+1 
b 
b 
b+1 
b 

9' 
e-i 
e-i 
e-i 

e 
e 
e 

a' 
a+l 
a 
a 
a+l 
a 
a 

Y 
7 
7+1 
7 
7 
7+1 
7 

j 
2-J < j < 0 
2-J < j < 0 
2-J < j < -1 
2-J < j < -1 
2-J < j < -1 
2-J < j < -2 

T' = T(t+j,7',b') 
< T 
< T 
< T-l 
< T-l 
< T-l 
< T-2 

U' = U(*') 
U-l 
U-l 
U-l 
u 
u 
u 

To estimate (7.5), use (2.19) and the assumption 9 > 0 to replace A _ , , 

by en . Then write QM_I( X > V ) a s t h e s u m °* (2.12)-(2.14) and use (2.5) to 

estimate each of the three resulting terms. This shows that (7.5) has the bound 

Use (3.3) to replace M+l by (1-x)""1/2 and the facts that b > 0 and 

1-y < 1-x to replace 1-y by 1-x. This gives (7.3) and completes the 

estimation of (7.5). 

To estimate (7.6), observe that since t+7+3/2 < [t+7+5/2] < J, and b > 0 

we have t-J+1 < 2b-7~l/2. Similarly, since t+1 < 3 < J we have 

t-J+1 < 0. We can, therefore, apply lemma (3.1); this gives the estimate 

c n 0(!_ x)a- l+b-(a+7+t-J+l+l) /2 

Since J > 3, this is bounded by (7.3). 

For the terms (7.7) note that in each case K' = T' + U ' < I, a' > - 1 , 

7' > -1 and b7 > 0. Furthermore, since U > 0, we have 9 > 0 and 

9' > - 1 . Therefore, we can use the inductive hypothesis to estimate each of these. 

Their sum is bounded by a sum of terms of the form (7.3) and (7.4) for each line 

in the table with t replaced by t+j and a, b, a, 7 and 9 replaced by a', 

b ' , a\ Y and 9' respectively. We may take j to be the largest value in the 
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line since smaller values of j produce smaller estimates. The resulting modified 

values of (7.3) are bounded by (7.3) times respectively n~ (l-x)~ ' , n~ (l-x)~ ' , 

n-^l-x)""1 /2 , 1, 1 and 1. Since n ^ l - x ) " 1 / 2 < M ' ^ l - x ) " 1 / 2 < 2, these terms 

are all bounded by (7.3). The modified versions of (7.4) are bounded by (7.4) 

times respectively l,(l-xr1/2(l-y)min(n,(l-y)*"1/2) J {l-x)~1f2[min(n,(l-y)~l/2)]~'lt 

(l-x)-1 /2[min(n,(l-y)-1/2)]-1 , ( l - x ^ l - v ) and ( l - x r ^ m i ^ n ^ l - y ) " 1 / 2 ) ] - 2 . Now 

replace min(n,(l-y)~~ ' ) by (l-y)~ ' in the second of these factors. Then 

using the facts that 0 < 1-y < 1-x and n > (1-x)"" ' shows that these factors 

are bounded by 1. Therefore, the modified versions of (7.4) are bounded by (7.4). 

This completes the proof of lemma (7.1). 

8. A Cesaro kernel estimate for t < s/2. Here we shall prove the following. 

Theorem (8.1). If a > - 1 , 0 > - 1 , 0 < t < s/2 < TT/4, s > 2/n and 

0 > 0, then | K n
a ' ^ ( s , t ) | has the bound 

(8 2) ct^1/2 cfminfUQI^1/2 

(8>2) nT^5 + > s ^ { 

where c is independent of n, s and t. 

To prove this, let x = cos s, y = cos t and M = [(1-cos s) ' ]. Since 

s < 7r/2, we have 

(8.3) l-s2/2 < cos s < l-s2/2 + s4/24 < 1+S 2 ( -1 /2+TT 2 / 96) < l-s 2 /3; 

consequently 

(8.4) M < (1-cos s )" 1 / 2 < v^/s < nV5/2. 

and 
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(8.5) 

By (2.26), |K<>'0'%,t)| 

(8.6) 

and 

(8.7) 

To estimate (8.6) use the fact obtained from (8.4) that n-k > n(2-^/S)/2 for 

0 < k < M-l and (2.19) to show that A ^ £ < c n W . Using this and (2.20) 

shows that (8.6) has the bound 

M - l 
(8.8) J I |K^°(s ft) | . 

k=0 

Now by the definition (2.18) 

< I \^'%)^'%)[ 
j=o 

By (8.4) and the hypothesis t < s/2, we have both s and t bounded by fl/M 

Thus, (2.7) implies 

k 
< c I (j+i^+V)"*1/2 < c(k+l)2Q+2(st)a+1/2 

and (8.8) is bounded by 

1-y < t2 /2 < s2/8 < (l-x)/2. 

is bounded by the sum of 

M - l 

TB I Z A n - k K k I8'*' 
An k=0 

1 I \ A H K ^ ' ° f i t l T5 | Z An-kKk l8'*' 
An k=M 

KJ>>^°(s,t) 

K^'Vt) 
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( s t ) a + 1 / 2 (M+l) 2a+3 

Now use (3.3) and (8.3); this shows that (8.5) is bounded by the first term of (8.2). 

To estimate (8.7) use (2.23). Since (8.5) is true, we can use (4.6) to show 

that (8.7) has the bound 

(8.9) 

Now write Q, (x,y) as the sum of (2.12)-(2.14)) and note that since a = 7 and 

u = v = 0, the term (2.14) vanishes. Next write the product of ujl ' and the 
1 

coefficients in (2.12) and (2.13) in the form ^ a.(k+l)J + 0((k+l) J ) where 
j= l+J 

J = min(-l, [-a -9])- This shows that (8.9) is bounded by a sum of terms of the 

form 

(8.10) 

and 

(8.11) 

c !*±fl. J I A^(k+l)Jp[a+1^(x)p(^)(y) 
An k=M 

c (i-yM'/) I y A^(k+i)Jp(a^)(x)p(a+1^)(y) 

with j an integer satisfying 1-hJ < j < 1 plus 

(8.12) c ^ I A ^ ( k + l ) J E ( Q + 1 ^ ( x ) E ( ^ ) ( y ) 
A n k=M 
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and 

(8.13) ^-yM 5 / ) i Af:£(k+i)JE[a'%)E(a+1>%). 
( 1 - x ) A n k=M 

For (8.10) use lemma (7.1) and (2.20) to get the bound 

(8.14) c n - % S l t ) ( n ^ ( l - ^ 2 a + i + 2 ) / 2 + ( l - x ) ^ a + ^ 3 / 2 ) / 2 [ m i n ( n , ( l - y r 1 / 2 ) ] a + H / 2 

This increases with j so we replace j by its maximum value of 1. Then use 

(8.3) and the same result for t to get the estimate 

(8.15) c n - % t ) a + 1 / 2 „ M - 2 o - 8 , .-a-0-a/2. , .-Ua+1/2 n s + s ' min(n,t ) ' 

Since t a + 1 / 2 [ m i n ( n , r 1 ) ] a + 1 / 2 = [min(nt, l)] a + 1 /2 , (8.15) equals (8.2). 

For (8.11) again use lemma (7.1), (2.20) and (4.6). This gives the bound 

c ( l -y )a ; ( s t ) r n M ( 1 _ x ) - (2a + 2 + j ) /2 + ( 1 _ x ) - ( a + g + l / 2 ) / 2 [ m i n ( n ) ( 1 _ y ) - l / 2 ) ] a + j + l / 2 
(1-xK L 

Again replace j by 1 and use (8.3) and the analogue of (8.3) for t to get the 

bound 

: t 2 ( s t ) « + 1 / 2 

s n 
„0 - l -2a -3 _L B-a-0-l/2., .-lxa+3/2" n s + s ' min(n,t ) ' 

. 2 , 2 In the first part use the fact that t /s < 1 to show it is bounded by the first 
2 —1 

term in (8.2). In the second part use the fact that t min(n,t ) < s; with this the 

second part is the same as the second part of (8.15). This completes the proof for 

(8.11). 
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For (8.12) we will use lemma (3.1); the definition of J insures that J < 0 

and J < -a-1/2. This gives the bound 

(8.16) c j f i ^ i l n*-l(i_x )-(2a+2+J). 

n 

This is less than the first term of (8.14) which was estimated before. Lemma (3.1) 

is also applied to (8.13). The result is (l-y)/(l-x) times (8.16) and is, therefore, 

less than (8.16). This completes the proof of theorem (8.1). 

9. A basic estimate for separated arguments. The lemma proved here is the 

basis for the inductive argument given in §11 to estimate kernels for separated 

arguments. Lemma (9.1) is also needed to estimate error terms. 

Lemma (9.1). If a, /?, 7 and 8 are greater than - 1 , a > 0, 

-1 < x < y-a < 1-a, n is an integer, and either t < -(3-y-3 or 9 < -fl-y-5, 

then 

(9.2) j (k+ijX-ki^w 47,5)(y) 
k=0 

has the bound 

(9.3) c(n+l)* + c(n+l) t E( a ' ^ (x) E^'%) 

with c independent of n, x and y. 

To prove lemma (9.1), split (9.2) into sums over 0 < k < [n/2]-l and 

[n/2] < k < n and use (2.19) and (2.6) to show that (9.2) is bounded by the sum 

of 
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[n/2]- l 
(9.4) c (n+ l ) ' I (k+1)* E ^ M E ^ ' f y y ) , 

k=0 

and 

(9.5) 0(11+1)* E ^ M E ^ y ) J (n+l-k)'. 
k=[n/2] 

For (9.4) use the facts obtained from (2.6) and the hypothesis -1 < x < y-a < 1-a 

that 

(9.6) Ej>'$(x) < c (k+ l ) / ? + 1 / 2 

and 

(9.7) E J ^ ) ( y ) < c(k+l)T+ 1 / 2 . 

These show that (9.4) has the bound 

[n /2] - l 
(9.8) c(n+l)* I ( k + l ) ^ + T + t + 1 . 

k=0 

If t < -0-j-Z, then the exponent of k+1 in the sum is less than -2 and (9.8) 
a 

is bounded by c(n+l) . If t > -(5-y-2, then (9.8) has the bound 

(9.9) c ( n + l ) * + ^ + t + 3 . 

From (2.6) we see that 

(9.10) 1 < (n+l)E^a'^(x) 
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and 

(9.11) 1 < ( n + l ) E ( ^ ( y ) . 

From these we see that (9.9) has the bound 

c t n + l Z + ^ + V l ) 4 E^)(x)E(^)(y). 

Since in this case 6 < -0-J-5, this is bounded by the second term in (9.3). This 

completes the estimation of (9.4). 

For (9.5), if 9 < -2, then (9.5) is bounded by the second term in (9.3). If 
04-2 

9 > -2, then the sum in (9.5) has the bound c(n+l) . Using this, (9.6) and 

(9.7) shows that (9.5) is bounded by 

(9.12) c ( n + l ) ^ + T + t + 1 + ^ 2 . 

Since 9 > -2, we also have 9 > -fi-f-b and by hypothesis t < - / J - T - 3 . 

Therefore, (9.12) is bounded by c(n+l) . This completes the proof of lemma (9.1). 

10. A reduction lemma for separated arguments. The lemma of this section is 

like lemma (6.1) but easier to prove. Like lemma (6.1) the result is valid for any 

x and y in [-1,1], but it is useful only if x and y are separated. 

Lemma (10.1). If a > - 1 , /? > - 1 , 7 > - 1 , 6 > - 1 , 9 > 0, t is real, 

-1 < x < 1, -1 < y < 1, J, m, n, u and v are integers, 0 < m < n and J > 2, 

then (6.2) can be written as the sum of (6.3), terms with absolute value bounded 

by (6.4), terms of the form 
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(10.2) (Ax+By+C) J (k+1)t+ i A^kp(^)(x)p(^f)(y)J 

k=m 

where 2-J < i < - 1 , n' = n or n-1, u ' = u or u-1 and v' = v-1, and 

terms of the form 

(10.3) Ax±lz±C j ( k + 1 ) t + i A * - l p ( ^ ) ( x ) p ( ^ f ) ( y ) i 

k=m 

where i = 0 or i = - 1 , u' = u or u+1 and v' = v+l+u-u ' . 

The proof of lemma (10.1) is similar to the proof of lemma (6.1). The 

equality (2.9) is used with the J of the hypothesis to write (6.2) as the sum of 

(6.6)-(6.8). As before, the terms in (6.7) have the form (10.2) if 2 < j < J-2 

while (6.8) and the terms in (6.7) with j = J-1 have absolute value bounded by 

(6.4). The term (6.6) is written as the sum of (6.9)—(6.11); the second term of 

(6.9) is (6.3) while the first term of (6.9) plus (6.10) equals (6.12). For (6.11) and 

(6.12) replace Q (x,y) by its definition (2.8), replace 2k+3 by 2(k+l)+l and 

in (6.11) replace (k+2)t~4 - (k+l ) t _ 1 by (6.14). For (6.11) this produces terms 

of the form (10.2) and terms majorized by (6.4). For (6.12) this produces the 

terms (10.3). This completes the proof of Lemma (10.1). 
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11. A kernel estimate for separated arguments. This section contains the 

inductive argument for estimating kernels with parameters larger than those allowed 

in §9. The result is stated in lemma (11.1). 

Lemma (11.1). If a, 0, 7 and 6 are greater than - 1 , a > 0, 

-1 i x < y-a i 1—a, t and 6 are real and n, u and v are integers, then 

(»•') I I ( ^ An-k ^ M P U ^ ) | 
k=0 

has the bound 

(11.3) c(n+l)* + cfn+l)* E ( ° > # ( X ) E^ ' fyy ) 

with c independent of n, x and y. 

To prove lemma (11.1) we will show inductively for each integer K that the 

estimate is valid if t+0 < K. If K = 2[-/?-7-4] and t+0 < K, then either 

t < —/3-T-3 or 0 < -0-*f-5. Lemma (9.1) will then prove the result for this K. 

To complete this induction, assume that the estimate is valid for t+9 < K 

and fix t and 6 satisfying t+0 < K+l. To estimate (11.2), apply lemma 

(10.1) with m = 0 and J = max([/?+7+t+5],2). Using the fact that l/(y-x) 

is bounded, we see that (11.2) is bounded by the sum of 

(11.4) c I (k+l)t+1-J A^EJ^WEJ^Cy), 
k=0 

terms of the form 

k=0 
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where 2-J < i < - 1 , n' = n or n-1, | u ' - u | < 1 and | v ' - v | < 1, and terms 

of the form 

k=0 

where i = 0 or i = - 1 , | u ' -u | < 1 and | v -v ' | < 1. 

For (11.4) use the fact that J > /?+7+t+4 to show that t + l - J < -/J-r-3-

Therefore, lemma (9.1) can be applied. Since t + l - J < t, the result is bounded by 

(11.3). For (11.5) we have t+i+0 < t+#- l < K so the inductive hypothesis can 

be applied. Since t+i < t, the result is bounded by (11.3). Similarly for (11.6) 

we have t+i+#-l < K. The inductive hypothesis again gives a bound not larger 

than (11.3). This completes the proof of lemma (11.1). 

12. Cesaro kernel estimate for t < s-b. Here we shall prove another basic 

estimate as follows. 

Theorem (12.1). If a > - 1 , 0 > - 1 , b > 0, 0 > 0 and 

0 < t < s-b < 7r-b, then |K^ a ,^ , t f (s , t ) | has the bound 

(12.2) n + 1 + - n + i ) , , 

where c is independent of n, s and t. 

To prove this, use (2.23) in (2.26) to show that | K ^ a ' ^ ( s , t ) | equals 

An k=0 
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Now replace Qi (x,y) by its definition (2.8). By (2.25) it is possible to 

write (2k+3)u[ a '^ in the form 

1 
I a.(k+l)J + 0((k+l)J) 

j= l - J 

with J = [0+7+4]. Using this, the fact that l/(y-x) < l/(l-cos b) and (2.5), 

we see that (12.3) is bounded by the sum of 

(12.4) c fiiijU | I A ^ ( k + l ) - J E ( a ^ ) ( x ) E ( a ^ ) ( y ) 
An k=0 

and terms of the form 

An k=0 

with 1-J < j < 1, u = 0 or u = l and v = 1-u. For (12.4), since 

y-x > 1-cos b and -J < - / J - T - 3 , we can apply lemma (9.1) to get the estimate 

(12.6) c 41^1 [(n+l)^1+(n+l)-JE(a^(x)E(a^(y)]. 
An 

By the definition (2.24), (2.19), analogues of (5.8) and the fact that 

(n+1) < n+1, this is bounded by 

c ( ^ ) ^ V 2 t Q + 1 / 2 r ( n + 1 ) M + [ ^ n ( ( 1 + x ) - l / 2 ) n + 1 ) ] ^ l / 2 [ m i n ( ( 1 _ y r l / 2 n + 1 ) ] Q + l / 2 j 
( n + 1 ) " L J 

which is bounded by (12.2). For (12.5) use lemma (11.1); this also produces the 

estimate (12.6) with -J replaced by j . This completes the proof of theorem 

(12.1). 
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13. Cesaro kernel estimate for s near t. This section is concerned with 

estimates for 1/n < |s- t | < s/2. For this case repeated summations by parts are 

not needed; what is used is Darboux's formula (2.15). 

Theorem (13.1). If a > - 1 , 0 > - 1 , n is an integer 9 > 0, 

0 < 1/n < s/2 < t < s < 3?r/4 and n(s-t) > 2, then 

(13.2) | K n
a ' ^ ( s , t ) | ^ c n - V t ) " * " 1 + en""11s-t|~2 

with c independent of n; s and t. 

To prove this, substitute (2.23) into (2.26) and use the fact that Q (x,y) is 

the sum of (2.12)-(2.14). Note also that since a = 7, u = 0 and v = 0, the 

term (2.14) vanishes. Therefore, IOa '™' (s,t) equals 

- ^ 4 I An^[p(a'/?)(x)p[a+1^(y)(l-y)-p(a+1^)(x)p(^)(y)(l-x)|V. k' 

where 

v _ (a,/?) (2k+3H2k + a+/?+2) 
v k _ uk 8 (k+l ) 

Now use the definition (2.1) to show that |KJ- a '^ ' (s,t)| is bounded by the sum 

of 

(13.3) 

[ 1 / ? I " 1 < l k K a ' / ? ) ( s ) 4 a + 1 ' / ? ) ( t ) s i n ( t / 2 ) 4 a + 1 ^ ( s ) « | , ( ^ ) ( t ) s i n ( s / 2 ) 

2 —p" 
k=0 An 

cos s - cos t 

and 
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(13.4) 

\ - k w k I 
k=[l/s] nn 

<t»[a^ )(s)<t»[ a + 1 ' / ? )(t)Sin(t/2H(a + 1^)(SW^)(t)sin(S /2) 

cos s - cos t 

where 

u - 2u(*>/?) (2k+3)(2k+cH-/?+2) [ (a,/?)t(a+l,/3) 
^k ~ ^uk 8k+T Tk xk 

i - l 

Note that by (2.3) and (2.25) there exist constants dQ, d, and d2, independent 

of k, such that 

(13.5) | ^ o ^ i ( k + 1 ) - l | < d2(k+l)-2 . 

To prove that (13.3) is bounded by the right side of (13.2), use (2.7) and the 

fact that s/2 < t < s to get the estimate 

(13.6) 
[ 1 / ? ] _ l A n : k K i ( k + 1 ) 2 Q + 2 s 2 Q + 3 

\ 
k = 0 An(cos t - c o s s) 

Since n > 2/s, we have from (2.19) that A*_£ <cn . From (2.20) we have 
9 —0 

1/A < en and from (13.5) we see that |UA | < c. Using these facts and 
estimating the sum, we have (13.6) bounded by 

c < c < c 
n(cos t - cos s) - ns(s-t) - n/s_t^2 

This completes the proof for (13.3). 

For (13.4), use (2.15), (13.5) and the fact that s/2 < t < s to show that 

^ " ' ^ ( s ^ 0 * 1 ^ ) and o ^ ( ^ 1 , ^ ( s ) < ^ a ' ^ ( t ) can be written as a sum of 

terms of the form cos(ks+a)cos(kt+b)uv, cos(ks+a)cos(kt+b)uv/(ks) and 
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—2 —2 cos(ks+a)cos(kt+b)uv/(kt) and a term with absolute value bounded by c k s , 

where a and u are bounded functions of s independent of k and t, b and 

v are bounded functions of t independent of k and s and c is independent 

of k, s and t. From this and (2.20) we see that (13.4) can be estimated by 

finding upper bounds for 

(13.7) 

(13.8) 

and 

(13.9) 

1 
n^s- t ) 

2 A , cos(ks+a)cos(kt+b) 
k=[l/8] 

11 An-k c o s ( k s + a ) c o s ( k t + b ) 

n"s(s-t) 
1 

k=[l/s] 

0 2 , .v 2 An-k k • n s (s-t) k = [ 1 / s ] 

To estimate (13.7) and (13.8) we will use the following lemma. 

Lemma (13.10V If 6 > 0, 0 < u < ZTT/2, nu > 2 and 1 < m < n/2, then 

(13.11) | I A £ J cos(ku+b) 
k=m 

< c u 4 + c n W u 4 

and 

(13.12) i V Ke-1 cos(ku+b)| . -1 -0 , „„&-l, x-1 
Z n - k — k — \ - c u + ( > ' 

k = m 
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To prove these, let N = max(m,n+l-[l/u]) and consider separately the sums 

from m to N-l and from N to n. For (13.11) the quantity A*T£ is 

monotone so by lemma (2.17) if 6 < 1 or a reversed version if 9 > 1, the 

absolute value of the sum from m to N-l has the bound 

c 
0_1 0_1 
n-m + An-N+1 

u By (2.19) this has the required bound. For the sum from 

N to n replace cos(ku+b) by 1 and use (2.22); this gives the bound A _N 

—B which, by (2.19), is bounded by cu 
i a i 

For (13.12), observe that k A*_£ is decreasing for 1 < k < n if 0 > 1. 
—1 9—\ If 6 < 1, then k A , is either monotone in 1 < k < n or has a minimum 

for k equal to some k~ and is decreasing for 1 < k < k^ and increasing for 

kQ < k < n. In either case, to estimate the sum from m to N-l, we can use 
—1 0—1 lemma (2.17) or a reversed version on the whole sum if k A _, is monotone or 

separately on the sum from m to kQ and on the sum from kQ+l to N. 

This produces the estimate 

cu"1 
[ n-m n-NJ' 

and (2.19) shows this is bounded by the right side of (13.12). For the sum from 

N to n, replace cos(ku+b) by 1. Since nu > 2, we have N > n/2 and the 
—1 6 1/k can be replaced by 2/n. Then using (2.2) we get the estimate en A „ 

—1 —6 for this part, and by (2.19) this has the bound en u This completes the proof 

of lemma (13.10). 

Returning to the estimation of (13.7)—(13.9), we write cos(ks+a)cos(kt+b) as 

a sum of cosines using the usual trigonometric identity. Lemma (13.10) then shows 

that (13.7) has the bound 
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— ^ [c(s-t)~tf + c n ^ ^ s - t ) " 1 + c (s+t r* + c n ^ s + t ) " 1 ] 
(s-t)n* 

and (13.9) has the bound 

l—j [ cn" 1 ( s - t ) "^+cn^ 1 s ( s - t r 1 + cn~1(s+t)"^+ c n ^ s + t ) " 1 ] . 
s(s-t)n 

These are easily seen to be bounded by the right side of (13.2). For (13.9) split 

the sum into sums over [1/s] < k < n/2 and n/2 < k < n. In the first replace 
n -j A—\ 9 9 

A , by n and estimate the sum. In the second replace k by c n 
and use (2.22). This gives an estimate of f ,v H — ^ for (13.9) which is 

ns^s i) n V ( s - t ) 
—1 —2 bounded by en (s-t) This completes the proof of theorem (13.1). 

14. Kernel estimates. Here we state and complete the proof of theorem (14.1), 

our estimate of the kernel K ^ a ' ^ ' (s,t). We also give an alternate version in 

corollary (14.2) and a version for L ^ a ' ^ ' (x,y) in corollary (14.7). For theorem 

(14.1) note that since K ( a ' ^ ( s 5 t ) = K J ^ ' ^ S ) and K ^ ' ^ T r - s ^ - t ) = 

K^' a) '^(s , t ) , we need only state the result for 0 < t < s and t < TT/2. 

Theorem (14.1). If a > - 1 , /? > - 1 , 0 > 0, and n > 1, then 

| K ( a ' ^ ( s , t ) | has the bounds 

c n 2 a + 2 ( s t ) a + 1 / 2 0 < s < 2/n, 0 < t < 2/n, 

ta+1/2 , c ( m i n ( l , n t ) ) a + 1 / 2
 9 / n , Q , . u n , f , Q / 9 

"5+572 + V l + 1 2/n < s < 3T/4, 0 < t < s/2, 

C , C 2 + 0 9+1 2/n < s < 37r/4, s/2 < t < s-l/n 
n(s-t)z n'(s-t) 
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en 2/n < s < 3TT/4, s-l/n < t < s 

c , » + l / 2 ( „ ^ l / 2 + c m l n ( l i n l , a + l / 2 m l n ( l i „ ( , _ s ) ) < ; + 1 / 2 J i / 4 s , s w_ , s , s , / 2 ] 

where c is independent of n, s and t. 

To prove theorem (14.1) we must obtain estimates for a few simple cases not 

included in §§3-13. For 0 < s < 2/n and 0 < t < 2/n we can use (2.7), (2.19) 

and (2.20) to show that 

K MA (s,t) < c(st) a+1/2 
[n /2] - l n 

I (k+l)2"+1 + I n2a+l-eA9
n_k 

L k=0 k=[n/2] 

In the first sum use the fact that 2a+l > - 1 ; in the second use (2.22) and (2.19). 

This proves the first estimate of theorem (14.1). The second estimate follows from 

theorem (8.1) if s < 7r/2 and from theorem (12.1) if TT/2 < s < 37r/4. The third 

estimate is a consequence of theorem (13.1). For the fourth we use (2.7), (2.19), 

(2.20) and the fact that s/2 < t < 2 to get the estimate 

[ l / s ] - l 
c I (k+l)2 a + 1 s 2 a + 1 

k=0 
+ c I •" vn-k-

k=[l/s] 

Since 2a+l > - 1 , the first term has the bound c/s < en, and by (2.22) and 

(2.19) the second term has the bound en. The fifth estimate is a consequence of 

theorem (12.1). This completes the proof of theorem (14.1). 
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An alternative form of theorem (14.1) can be stated using the functions 

g(s) = s a + 1 / W + l / 2 

and 

This version has the advantage that it gives one expression for all pairs (s,t) in 

[0,7r] * [o,7r]. The disadvantage is that the behavior is not apparent until it is 

rewritten into a form resembling the conclusion of theorem (14.1). 

Corollarv (14.2).. If a and 0 are greater than - 1 , 0 > O , O < s < 7 r 

and 0 < t < 7T, then | K n
a ' ^ ( s , t ) | has the bound 

c fi(s)fi(*) + cfi(s)fi(t) 
nh(5+i),n)2(|s-t | + R - ) 2 nVs,n)h( t ,n)( | s - t | + n - ) m ' 

where c is independent of n, s and t. 

To prove corollary (14.2), let D ^ 0 ^ ' (s,t) be the asserted upper bound. 

For the case 0 < t < min(s,7r/2) it is easy to verify that 

(14.3) | K ^ ' * ( s , t ) | < D ^ ^ s . t ) 

by using theorem (14.1) and the definition of D^a ,"'(s,t). For 7r/2 < t < s < 7r, 

we have 0 < 7r—s < min(7r-t,7r/2); as just shown, therefore, 

(14.4) |Kn^a)^(7T-t,7r-6)| < Dn
fta)(7r-t,7r-s). 

Now since K n
a ' ^ ( s , t ) = K < > ' ^ ( t , s ) and K<>>^(s, t ) = K ^ * ( w t ) , 

we have 
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(14.5) Kn
a '^(s, t) = K(A°)'V-t,M). 

from the definition of D ^ a ' ^ ' (s,t) it is easy to see that 

(14.6) Dn^a)(*-t,7r-s) = D n
a ' ^ ( s , t ) . 

Combining (14.4), (14.5) and (14.6), we get the result for this case. Combining 

these cases, we have the estimate 0 < t < s < ir. Since K > a ' ^ ' (s,t) = 

K ( a ' ^ ( t , s ) a n d D n
a ' ^^ ( s , t ) = D J ^ ' ^ S ) , the asserted bound foUows for 

0 < s < t < 7r. This completes the proof of corollary (14.2). 

To state our estimate for the basic Cesaro kernel L ^ a ' ^ ' (x,y) defined in 

(2.27) we will use the function 

and 

= l/-*l 4.1 J(x,y,n) = -H=^- + i 

The resulting estimate is as follows. 

Corollary (14.7). If a and 0 are greater than - 1 , 0 > 0, -1 < x < 1 

and -1 < y < 1, then |L|[a ,^ , f f(x,y)| has the bound 

c + c 
nH(*±£),n)2 J(x,y,n)2 n%(x,n)H(y,n) J(x,y,n)1 + * ' 

where c is independent of n, x and y. 
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To prove corollary (14.7) let s = cos" x and t = cos" y. Then because of 

(2.29) we see that the result can be proved by showing the existence of a positive 

constant c, independent of s and t such that 

< c <Ii8) * S (Sin lAios |)*+'/S 

and 

1 l s - t l + n" 
( 1 4 1 °) c - J(cos s, cos t,n) * c 

for s and t in [0,7r]. NOW (14.8) is obvious from the definition of g(s), and 

(14.9) follows easily since yi-cos s = J2 sin « and VI+cos s = v^ cos « • For 

(14.10) use the fact that 

T / ~ „ „ ± \ I COS t - COS S | , 1 
J(cos s, cos t,n) = ' • h - . 

^(1-cos s+l-cos t)(l+cos s+l+cos t) 

Using standard identities this becomes 

i • S-t i . S+t 
I sin -s- |sin - y - , 

J(cos s, cos t,n) = — z m z ^ ^ Z Z I Z Z ^ I ^ Z ^ Z Z I Z Z ^ + n ' 
J (sin2 | + sin2 ^)(cos2 § + cos2 J) 

Considering separately the cases of s and t both in [0,7r/4], S and t both 

in [37r/4,7r] and one in [0,3^/4] with the other in [fl"/4,7r], it is easy to see that 
s—t the function multiplying | sin y | is bounded above and below by positive 

constants. This completes the proof of corollary (14.7). 
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(15.3) f s 2 * + W * " 1 ds < ca-P r / 2 | g ( t ) | P t ( ^ 1 / 2 ) ( 2 "P)d t , 

15. A weak type lemma. Here we shall prove lemma (15.1) which is 

equivalent to theorem (1.1) with the support of f in [0,1]. Lemma (15.1) will be 

used to prove theorem (1.1) in §17. At the end of this section we also show that 

the method used to prove theorem 1 of [7] will not prove lemma (15.1). 

Lemma (15.1). If a > - 1 , 0 > - 1 , 7 = max(a,/J), 6 > 0, p = 

max[l,(47+4)/(27+20+3)], g(t) is supported on [0,x/2], a > 0 and D(a) is the 

subset of [0,7r] where 

(15.2) sup r / 2 | K ( ^ ) ' V t ) g ( t ) | d t > a s ^ 1 / 2 u _ s ) / ? + l / 2 ) 
n J0 

then 

'D(a) % ' " J o 

where c is independent of a and g. 

To prove this note first that we may assume that g(t) is nonnegative. For 

this proof we will use the notation 

H = r ' w t(«+i/2)(2-p)dt. 
J 0 

To prove the lemma we will define nonnegative functions I .(s,t) such that 

for (s,t) in [0,TT] * [0,TT/2] 

11 
(15.4) Kn

a '^(s, t) < c I ^.(s,t) 
i= l 

for n > 1 and 

(15.5) IK< a ^ ( s , t ) I < c[t1A(s,t) + llA(s,t) + ^ 10(s,t)]. 
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Now let D. be the subset of [0,7r] where 

(15.6) 

We will show that 

(15.7) 

f7T/2 
sup f / :(s,t)g(t)dt > a s a + 1 / 2 ( ^ - s ) 
n>l J 0 n '1 

f s 2 ^ V - s ) 2 ^ 1 d s < c a - P H 
J D : 

/J+l/2 

for 1 < i < 11. Because (15.4) and (15.5) are true, this will complete the proof of 

the lemma. 

For some values of i we will prove (15.7) directly. For other values of i, 

however, we will prove the inequality that 

f7T r f7r/2 
(15.8) sup tni(s,t)g(t)dt 

J 0 [n>l J 0 n>1 5 ^ 1 / 2 ( . - s ) ^ 1 / 2 l 2 " P d s 

is bounded by cH. This strong type inequality trivially implies (15.7). 

The functions / . are defined as follows on the indicated sets and 0 off n,i 

those sets. That (15.4) and (15.5) hold is an immediate consequence of theorem 

(14.1). 

sa+l/2 
'n,2(s,t) ~ J-a-\j\6+\ 

sa+l/2 
^n,3(s,t) = TT5+575 

nt 

t a+ l /2 
*n,4(S,t) = S-a-l/iJ+1 

0 < s < 2/n, 0 < t < 2/n, 

0 < s < 2/n, 2/n < t < T/2, 

0 < s < 2/n, 2/n < t < w/2, 

2/n < s < 3TT/4, 0 < t < 2/n, 



CESARO SUMS OF JACOBI POLYNOMIALS 53 

ta+l/2 
V 5 ( 8 , t ) = a+5/S 2/n < s < 37T/4, 0 < t < s/2, 

n s 

ln/s'^ = ~TWL 4/n < s < 3T /4 , 2/n < t < s/2, 
n s 

o + -73 m i 2/n < s < 3*74, s/2 < t < min(2s,x/2), 
n ( | s - t | + l / n ) 2 n 6 ' ( | s - t |+ l /n ) 1 + e ' 

,o+l/2 
V s ( s , t ) = a+5/2 2/n < s < T/4, 2s < t < ir/2, 

*n,9 ( s , t ) = TTR 2/n < s < T/4 , 2s < t < TT/2, 
n n 

a+1/2, ./J+l/2 
'n,10 ( s , t ) = * n 3 T / 4 < S < T, 0 < t < TT/2 

^ (8)t) = mi°(l,nt)Q + 1 / 2^min(l,n(T-S))^+ 1/2
 3 x / 4 < 8 < T> 0 < t < x/2. 

' n 

The following simple inequalities will be used in several of the estimations. 

First, since 27+20+3 > 27+2, the definition of p shows that 

(15.9) 1 < p < 2. 

We also have from the definition of p that 

(15.10) p(7+0+3/2) > 27+2, 

and since a < 7 and p < 2, this implies 

(15.11) p(a+0+3/2) > 2a+2. 
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To prove (15.7) for i = 1 we start with the fact that the left side of (15.6) 

equals 

(15.12) sup n 2 «+ 2 a**1/2 x [ 0 ,2 / n ](S) ffa0*1'2 dt. 

Now using 

(15.13) t a + 1 / 2 g ( t ) = [ t(a+l/2)(2-p)/p g ( t ) ] [ t (2a+l)(p-l) /P ] 

and Holder's inequality we have 

(15.14) f 2 / n g ( t ) t ^ 1 / 2 d t < c n " ( 2 ^ 2 ) / P / H 1 / P 

From this we see that (15.12) is bounded by 

n>l 

Since a > - 1 , 

( ^ l / p ^ l / 2 , ( 0 ] 2 H ( S ) H ' / P . 

SUD n ( 2 Q + 2 ) / p y r , ,(s) < c s ^ 2 a + 2 ) / p y r , ,(s) *$ n X[0,2/n]^ - c s *[0,3ir/4p> n>l 

and D. is a subset of the set where 

a + l / 2 s - ( 2 a + 2 ) / p ( s ) H l / P > a s a + l / 2 , 
X[0,3TT/4] 

Therefore, D1 is a subset of [0,r] with 

(15.15) r = min(3T/4, c a-p/(2a+2) H l / (2a+2) ) 

Since (15.7) is immediate if D. is replaced by [0,r], this completes this part. 
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For i = 2 we will estimate (15.8). For this case (15.8) equals 

r2 

Jo n>? *[0>WS)[ 
• * / 2

n a - m / 2 t - M r t t ) d t 

2/n 
„2a+l ds. 

Since n ' < t ' in the inner integral, this is bounded by 

f sup n ( ^ ) P XfQ 2 / n l ( s ) [ f r ( 2 r 1 / 2 g ( t ) d t l P s 2 ^ 1 

J 0 n>l l u ^ / n J U 2 / n -I 
1ds. 

Since the exponent of n is positve, the supremum occurs for n = [2/s]. This 

gives the estimate 

r7r/2rf7r/2 __ ^ / 2 ^ / 2 t _ 1 / 2 g ( t ) d t j P s 2 a + 1 _ p ( a + 1 ) d s 

By (15.9) the exponent of s is greater than - 1 , and Hardy's inequality, Lemma 

3.14 on page 196 of [12], gives the bound cH. 

For i = 3 we have (15.8) equal to 

Replace n in the inner integral by t and then replace n by [2/s]. This 

gives the estimate 

f d*/V<-3/2g(.)d.]'>+1ds. 

Since 2a+l > - 1 , Hardy's inequality can be used. This gives the estimate cH 

for this part. 

For i = 4 we start with the fact that D. is the set where 

r2/n 

' o SI'**1" ^w^C'^W >-^M/2-
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Using (15.14) shows that D. is a subset of the set where 

(15.16) OH1/? sup ^e+1/H2a+2),%/nM/4s) > a s a + ^ + 3 / 2 . 

The exponent of n in (15.16) equals (2a+2)/p-(a+0+3/2) and by (15.11) this 

is less than or equal to 0. The sup is, therefore, attained for the least n 

satisfying n > 2/s and D. is a subset of the set where 

c H l / p s(2a+2)/p ' -a+<M/2 ^ ^ ( . J > a s a + * + 3 / 2 . 

Simplifying, we see that this last set is the set where 

c n *[0,3ir/4]W > a s 

This is the set [0,r] with the r of (15.15) and (15.7) follows immediately for 

i = 4. 

Next, D5 is the set where 

s u p c n - 1 s - 5 / 2 X [ 2 / n 3 7 r / 4 ] ( s ) j ' V 1 ^ > a s * + l / 2 . 

Now use (15.13) and Holder's inequality on the integral and replace n by 2/s 

to show that D^ is a subset of the set where 

c . - ^ / 2 H 1 / P . ( 2 * * - 2 ) / P ' X [ 0 | 3 i r / 4 ] ( . ) > a . ^ 1 / 2 . 

From this D^ is a subset of [0,r] with the r of (15.15) and (15.7) follows. 
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The set Dg is a subset of the set where 

c sup n 
n>l 

fs/2 . . . . .1 , . a+0+3/2 |2 / ng(t)dt jx [ 4 / n j 3 7 r / 4 ] (s) > a s 

Use Holder's inequality to show that Dg is a subset of the set where 

« a x(2/n,3l/4,WH^[i;;v*'.'-/2,(2-p./(i-p»dt] 

If the exponent of t is less than - 1 , integrate to get 

s / 2 n _ ^ , t ( a + 1 / 2 ) ( 2 _ p ) / ( 1 _ p ) d ^ l / p ' > a s a + ^ + 3 / 2 

2/r 

« P C X [ 2 / a , 3 i r / 4 ] ( . ) H 1 / P n ( 2 ^ ) / H « + m / 2 ) , a 8 a f * f 3 / 2 _ 

If the exponent of t is not less than - 1 , replace n""^ by t ^ and 

integrate to get 

- P c * [ 2 / n , 3 T / 4 ] ( s ) H l / P s a + ^ 3 / H 2 a + 2 ) / p > a s a + * + 3 / 2 

In the first case the exponent of n is nonpositive by (15.11) and the supremum is 

attained at the least n > 2/s. In both cases then Dfi is a subset of the set 

where 

<*[0,3»/4]MH I /P . "<»•«>/» > , 

This is the set [0,r] with the r of (15.15) and (15.7) follows. 

To prove (15.7) for i = 7 define for k a positive integer 

Ik = [2~k~V2~k7r], J k = [2"k"37r,2"k + \] and gk(t) = g(t)Xj (t). Then for a 
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suitable c 

<" r 2s 
D7 c {s: sup I | gk(t)*n7(s,t)dt > c a s a + 1 / 2 } . 

k=l 3 / 2 

Since at most three of these integrals are not zero for any given value of s 

D7 C U Is: 3 sup [ gi (t)/ 7(s,t)dt > c a s a + 1 / 2 } . 
' k= l l n>l Js/2 K n ' ' J 

By theorem 2, p. 62 of [11], we have 

(15.17) D7 C U is: Mgk(s)xj (s) > c a s a + 1 / 2 } , 
1 k = l l K Jk J 

where M denotes the usual Hardy-Littlewood maximal operator. If E, denotes 

the k set in (15.17), then the left side of (15.7) for i = 7 has the bound 

(15.18) c I \ s 2 a + 1 d s < c I 2 - k ( 2 a + 1 ) | E k | . 

k=l Ek k=l 

By the usual weak type norm inequality for the Hardy-Littlewood maximal function, 

theorem 1, p. 5 of [11], we have 

| E k | < c [ a 2 - k ( a + 1 / 2 ) ] - P j g k ( s ) P d s . 

Therefore, the right side of (15.18) has the bound 

\ a"* 2-k(*+l/2)(2-p) J g(s)Pds. 
00 

C 

k=l 

This is bounded by 

'0 

and (15.7) is proved for i = 7. 

ca-P f37r /4s(a+1/2)(2-P)g(s)Pds, 
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For i = 8 (15.8) is bounded by 

r7r/4rf7r/2 _ ^ _^/o nP 

Since sup n P 
n> 

up n~Pxro/« o //ii(s) 1 SPJ t n i s n a s t n e bound >1 Lz/IM7r/^J 

= r'V'2^)'-^ '0 

Hardy's inequality completes this case. 

For i = 9 (15.8) has the bound 

p
s 2a+l+p 

r7r/4r f7r/2 _x_ 
g(t)t 'dt ra+l/2)(2-p)siin -to 

n>] 

Now we use the fact that sup n~ X\o/ /4l(s) - c s^ • ^ e r e s u i^ n g exponent 

of s is (a+l/2)(2-p) + p0. Since a > -1 and p < 2, this exponent is greater 

than (-l/2)(2-p) + Op = - l+(0+l/2)p > - 1 . Hardy's inequality then completes 

this part. 

For i = 10 (15.8) is bounded by 

TT/2 

c [f ( H ^ d , ] [}"' g(t)t«+V2dt 
' 3 * 

The first integral is finite since 0 > - 1 . Holder's inequality shows that the second 

IP"1 

This completes this part. term is bounded by H [f 'V^dt 
'0 
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Finally, for i = 11 we will first show that 

7r/2 
(15.19) TT6 f min(l,nt)a + 1/2g(t)dt < c H 1 ^ . 

J0 

To do this we start with the fact that the left side of (15.19) is the sum of 

(15.20) n ^ + 1 / 2 f 1 / n
t ^ l / 2 g ( t ) d t 

Jo 

and 

n r7T/2 

(15.21) n * g(t)dt. 
J l / n 

For (15.20) we use (15.14) to get the bound 

(15.22) c n oH?+l /2^2a+2) /p ' H l / p . 

Inequality (15.11) implies that the exponent of n is not positive and we have the 

bound c H 1 ^ for (15.22). 

For (15.21), Holder's inequality gives the bound 

(15.23) n^H^P[r /V^V2)(2~p)/(l-p)d tl1 /P /-
u l / n J 

Inequality (15.11) implies that the exponent of t is bounded below by - l -p ' 0 . 

This shows that (15.23) is bounded by cH ' ^ and completes the proof of (15.19). 

Using (15.19), we have (15.8) with i = 11 bounded by 

cH f sup min( l In( T-s ) )P^ + 1 /2) ( T _ s ) (^ l /2) (2-p) d s 

hw/A n>l 
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This is bounded by the sum of 

(1524) CH L4M)(^1 /2 ) (2"P)n>? XM*.*-U4*» 
and 

(1525) CH lL/4 ( 7 r"^ ) 2^+ l s U P n P ( / ? + 1 / 2 ^ [ - l / n ^ ] ( s ) d S -

Now (15.24) equals 

(15.26) cH f ( . - s ) (^ 1 / 2) ( 2-P)ds . 
J3?r/4 

If 0 > -1/2, then since p < 2 we have (/3+l/2)(2-p) > 0. If 0 < -1/2, then 

(/3+l/2)(2-p) > 2/J+l > - 1 . Therefore the integral in (15.26) is finite and (15.24) 

has the bound cH. 

If 0 > -1/2, the sup in (15.25) is attained for n = [—]• This produces 

the bound (15.26). If 0 < -1/2, the sup in (15.25) is attained for n = 1. It 

follows that (15.25) has the bound cH. This completes the proof of lemma (15.1). 

Finally, we comment on why the method used to prove theorem 1 of [7] 

cannot be used to prove lemma (15.1) if a > 0 and 6 < a-I- j . In the proof of 

that theorem in [7], the result of lemma (15.1) must be obtained with 

KKaiP)i (s t) replaced by various error estimates, one of which is 

r l 
K(s,t) = J 

0 < t < s < TT/2 

elsewhere 
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If we take g(t) = tuxr0 7r/2l(t) w i t h "1~d < u < - 1 » t h e n D ( a ) = [ M f o r ^ 

a > 0. However, this integrand on the right side of (15.3) is ^ f a - a - s H 2 ^ 1 

and this exponent is greater than p(-#-a-3/2)+2cH-l = - 1 . Therefore, as a -» m 

the left side of (15.3) is a fixed positive number and the right side approaches 0. 

This shows that lemma (15.1) fails for this error term and, consequently, the 

method of [7] cannot be used. 

16. Lemmas for the upper critical value. Here we prove two basic results. 

The first, lemma (16.1), is equivalent to theorem (1.2) with the set a subset of 

[0,1]. The second, lemma (16.4) is equivalent to theorem (1.3) for functions with 

support in [0,1]. These lemmas will be used to prove theorems (1.2) and (1.3) in 

§17. At the end of this section we also show that the method used to prove 

theorem 1 of [7] will not prove lemma (16.1). 

Lemma (16.1). If a > - 1 , 0 > - 1 , 7 = max(a,/?), 0 < 9 < 7+1/2, 

p = ( 2 7 + 2 ) / ( T - 0 + 1 / 2 ) , E C [0,TT/2], a > 0 and D(a) is the set where 

(16.2) sup \K\ 
n JE n 

then 

(16.3) f s 2 a + W ^ 1 ds < c a"? f t 2 Q + 1 dt , 
JD(a) J E 

where c is independent of a and E. This is also true if 0 < 6 = 7+1/2 

and 2 < p < ao. 
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Lemma (16.4). If a > - 1 , /? > - 1 , 7 = max(a,/?), 0 > 7+1/2, 6 > 0 and 

g(t) is supported in [0,7r/2], then 

s : Q K ( ^ ) ^ ( M ) g ( , ) i d t 
^+172^+172- < c JLLLL 

^+172 

where || || denotes the essential supremum on [0,7r] and c is independent of 

g-

Basic to the proof of lemma (16.1) is the following. 

(16.6) 

Lemma (16.5). If 1 < p < oo, a > -1 and E c [0,OD), then 

IP x dx < 2P(a+l)1~P [ x ^ + P ^ d x . 
JE 

This will be used as a substitute for Holder's inequality in the proof of lemma 

(16.1). The obvious proof of lemma (16.5) using Holder's inequality fails because 
p-1 

that produces a coefficient (l/x)dx on the right side. 

To prove lemma (16.5) observe first that by the monotone convergence 

theorem it is sufficient to prove (16.6) for bounded E. Then since a > - 1 , the 

left side is finite and we can choose s such that 

JoXaxE(x)dx = j j ^ d x . 

With this the left side of (16.6) equals 

2P[jSxa
X E(x)dx]P [px axE(x)dx] < 2 P [ | S x a dx] P [ j V ^ W d x ] . 

P - 1 p f OD 

s 



64 SAGUN CHANILLO AND BENJAMIN MUCKENHOUPT 

Performing the first integration gives the bound 

2P(a+l)1-P f s ^ + W P - ^ x V t o d x . 
J s 

Since (a+l)(p-l) > 0, we can replace s by x and (16.6) follows immediately. 

The proof of lemma (16.1) is similar to that for lemma (15.1). We let 

H = f t 2 a + 1 d t 

and D- the subset of [0,x] where 

(16.7) sup f I . (s , t) t"+ 1 /2dt > a s a + 1 / W + 1 / 2 ; 
n>l J E n ) 1 

the functions I • are those used in §15. For each i we will prove (15.7). For n,i 

some parts this will be done by showing that 

(16.8) T [sup f Ini(s,t)ta+1/2dt] 
Jo [n>l JE n > 1 J 

V+1/W+1/2i2~p ds 

is bounded by cH. 

The following inequalities will be used. First since 7+1/2-0 < 7+1, we 

have 

(16.9) 2 < p < OD. 

From the definition of p, including the case 0 = 7+1/2 

(16.10) p(7-0+1/2) < 27+2. 
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Since a < 7, 0 < 7 and p > 2, (16.10) implies 

(16.11) 

and 

(16.12) 

p(a-0+l/2) < 2a+2. 

p(/J-0+l/2) < 2/3+2. 

For i = 1 the proof used for i = 1 in the proof of lemma (15.1) can be 

used if g(t) is replaced by t ' X]?(t). 

Next, Do is a subset of the set where 

f7r/2 a-tf-1/2 
sup 
n>l J2/n?Z^ I72XE(t )d t |X[0'2^ (S )>Ca-

Now multiply the numerator and denominator in the integral by i r "*\ By 

(16.11) the resulting exponent of n in the denominator is nonnegative and 

replacing that n with 1/t increases the left side. Therefore, D« is a subset of 

the set where 

sup n 
n>l 

(2<*+2)/p ^ " 1 + ^ 

Since the left side is 0 for n > 2/s, we have Do a subset of the set where 

(16.13) c X[0>2](.) J*7 V + ( ^ 2 ) / p X E ( t ) d t > a s(2a+2)/p. 

Since - l+(2a+2)/p > - 1 , we can apply lemma (16.5) to see that D« is a subset 

of the set where 

cx [0 j2](s) t2a+1dtl1 /P>as(2a+2)/P. 
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Therefore D2 is a subset of [0,r] with 

r = min(3x/4,c[a-PH]1/(2a+2)) 

and (15.7) follows immediately. 

For i = 3 we have (16.8) equal to 

r2 
sup *rn 0 / - i (s) | I 

2/: 
-1 

lo:;? x[o,2/n]W[f^-1t-VHp-2f l f f1^ 

Replacing n by t in the inner integral gives the bound 

Jo K? *[0,2/n](S)[Ln
rVH •2*fl<»--

which is bounded by 

ar'-vH^1-
Hardy's inequality completes this part. 

For i = 4 (16.8) is bounded by 

4 2a+l 
f3* / 4[ f2/n * XE(t)dt]P fa+l/2)(2-P)-p(tf+l)H 

Jo n>? JO J-^1/* X[2/n,3T/4](s) S' ^ 

Now if 0-a-l/2 < 0, replace n by 2/t; otherwise replace n by 1/s. This 

gives the estimate 

r3?r/4 f2/n 

where r = min(0-a-l/2,O). The supremum occurs for the least n such that 
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2/n < s. Therefore, we have the estimate 

r37r/4[rs
t2a+i+r 

Jo No 
XE(t)dt lP 2a+l-p(2a+2+r)dg 

If r = 0, the exponent of s is -1 for p = 1. If r t 0, the exponent is 

-2-20 for p = 2. Since a > 1 and 0 > 0, we have 2a+2+r > 0 and the 

exponent of s is a decreasing function of p. Therefore, since p > 2, that 

exponent is less than -1 and Hardy's inequality completes this case. 

For i = 5 (16.8) has the bound 

42a+l„ , + ^ i p 
f37r/4 

sup 
J0 n>l 

•s/2 t ^ x x E ( t ) d t 

0 n 
yr , , ,(8) s(a+l/2)(2-p)-p(a+5/2)d s *[2/n,37r/4]W s a s -

Replacing n by 2/s gives the bound 

r3*/4! rs M+I r07T/<±| rS 

Jn U n 
XE(t)dt 

P
s2a+l-p(2a+2) ds. 

'0 I J0 

Since p > 2 the exponent of s is less than -1 and Hardy's inequality 

completes this part. 

For i = 6 the bound for (16.8) is 

r37r/4r fs/2 xE( t) GH-1/2 -.p (O+1 /2V2-D^ 

I. te U -bfa-dt] i^/ . iw »(°+1/2)(2 "*• 
We can replace the lower limit of integration in the inner integral by 0 and then 

replace the other n with 4/s to get the bound 

r3*/4 r fs a + l / 2 d t ] P s2a+l-p(a+3/2)d s > Jo W * 
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Since p > 2, the exponent of s is less than - 1 , and Hardy's inequality 

completes this part. 

For i = 7 and i = 8 the reasoning in the proof of lemma (15.1) for these 

parts can be used with g(t) taken to be t ' XpM-

For i = 9 we see that DQ is a subset of the set where 

r7r/2 t a + l / 2 

2/s 
sup 
n>l [j2/s 7 ~ ^ xvm\xiv«,*,4s) > c a ' • 

We can replace n by [2/s] to see that DQ is a subset of the set where 

S 

Because of (16.11) we can multiply the integrand by (t/s)*"0"1/2^2**"1"2)/? to 

show that DQ is a subset of the set where (16.13) holds. The estimation is then 

completed as in the case i = 2. 

For i = 10 the reasoning in lemma (15.1) applies with g(t) replaced by 

t a + 1 / 2 X E ( t ) . For i = 11 we first prove that 

f7r/2 
1/P (16.14) f m in ( l , n t ) a + 1 / 2 t a + 1 / 2 x E ( t ) d t < cH 

J s 

To do this split the integral into integrals over [0,1/n] and [l/n,7r/2]. Holder's 

inequality shows the first integral is bounded by 

c H l /p n a+l /2 - (2a+2) /p ' 

From the fact that 1 < p ' < 2 and a > -1 it follows that the exponent of n 

is negative and, therefore, this part is bounded by cH '*\ Holder's inequality 
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applied to the second part gives 

Hi/Prr7r /2
t(a+i/2)(p-2)/(P-i)d ti1/p / 

Ul/n J 

Since a > -1 and 2 < p < QD, the exponent of t is greater than -1/2, and 

this part also has the bound cH ' p . 

Using (16.14) we see that D... is a subset of the set where 

sup c H 1 ^ n-6rmn(l,n(^)f+l,2X[3ir/^](s) > a (7 r - s / + 1 / 2 . 

This is a subset of the union of the sets where 

(16.15) sup cH1/* n-*x [37r /4)7r_1/n](s) > W + 1 / 2 

and 

(16.16) sup cH1/? n W ' V W ' > > a. 

For (16.15) the supremum occurs for the least n satisfying n > 1/(TT-S) and the 

set is a subset of the set where 

(16.17) cH1/? X [3V4)X](s) > a ^ - s ^ 1 / 2 . 

From (16.12) we see this is a subset of the set where 

This is the set [r,?r] with 

^ i r / ^ H c a ^ H ) 1 / ^ 2 ) ) r = max( 
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and (15.7) follows. 

For (16.16) if / M + l / 2 > 0 the supremum occurs for n = [1/(TT-S)]. Then 

this set is a subset of the set satisfying (16.17) which was estimated before. If 

0-0+1/2 < 0, the supremum occurs when n = 1 and the set is a subset of the 

set where 

C H 1 / P X[«-I4S) > a-

ii/p i /p If a > cH / p , this set is empty and (15.7) is trivial. If a < cH / p , this set is 

[7r-l,7r], a_pH > c and (15.7) follows. This completes the proof of lemma (16.1). 

To prove lemma (16.4) we will prove the equivalent inequality 

s u P j ^ | K ( a ^ ) , g ( s t ) t a + 1 / 2 g ( t ) | d t 

For this it is sufficient to prove that 

J^IK^'Ms.tHt^dt 

< c||g(t)|l 

la+l/2(™f+1'2 [M 
(s) < c 

with c independent of n and s. Because of (15.4) and (15.5) it is sufficent to 

show that 

(16.18) 
r7r/2 
r t . ( s , t ) t a + i / 2 d t < C s a + i / 2

( ^ + i / 2 

j 0
 n ^ 

for 0 < s < 7r. 

Inequality (16.18) is easily proved for 1 < i < 10 by inserting the definition 

of I ., performing the integration and using the fact that B > cH-1/2. For 
i i . i 
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i = 11 performing the integration gives the bound 

(16.19) c rTemm(lM^))^^X^j^p)-

If 0 < 7T-s < 1/n, (16.19) is c n ^ + 1 / 2 ( 7 r - s ) / ? + 1 / 2 and (16.18) follows since 

0 > 0+1/2. If 1/n < TT-S < TT/4, (16.19) is c n"^ < C(TT-S)^ since 0 > 0, and 

(16.18) follows from 0 > 0+1/2. 

Finally, we show that the methods of [7] cannot prove lemma (16.1) if 

a > /?. If this could be done, it would require that lemma (16.1) be true with 

j£KaiP)> £Sj^ replaced by the error term 

K(s,t) = 
rj 0 < s < t < TT/2 

0 elsewhere 

If we take E = [0,1] and a > l / (a+l /2) , then D(a) contains the set 

[(^ca"1/^1/2)] for a suitable constant c and (16.3) would require that 

a-(2a+2)/(a+l/2) < c a~p 

For this to be true for arbitrarily large a we must have -(2a+2)/(a+l/2) < -p 

or p < (2a+2)/(a+l/2). Since the p of lemma (16.1) does not satisfy this 

inequality, lemma (16.1) fails for this error term. Consequently, the method of [7] 

cannot be used. 
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17. Proofs of theorems (1.1)—(1.3). To prove theorem (1.1) we make the 

change of variables x = cos s and y = cos t and let 

g(t) = f(cos t)(sin t /2) a + 1 / 2(cos t / 2 )^ + 1 / 2 . Then by (2.29) the set E(a) is the 

set of all values of cos s for s in the set D.(a) where 

(17.1) s u p | [ V ; a ' ^ s , t ) g ( t ) d t | > a(sin s/2) a + 1/2(cos s / 2 ) ^ 1 / 2 . 
n>0 I J0 n I 

Furthermore, the conclusion of theorem (1.1) is equivalent to 

(17.2) f (sin s/2)2a+1(cos s/2)2^+1ds 

•S(a) 
< c a - p fT |g(t)|pf(sin s/2)a + 1 /2(cos s / 2 ) ^ + 1 / 2 l 2 _ P 

JO L 

For suitable c, D.(a) is a subset of the set D(a) where 

(17.3) sup [ V ^ V O g W I d t > c a s a + 1 / 2 ( ^ + 1 / 2 , 

ds. 

n>0 J 0 

and it is sufficient to prove that 

(17.4) f s ^ + W ^ d s ^ a - P r i g ( s ) | P [ s Q + 1 / 2 ( ^ + 1 / 2 ] 2 - P d s . 
'D(a) 

For g with support in [0,7r/2], (17.4) was proved in lemma (15.1). For g 

with support in [7r/2,7r] the change of variables s = 7r-u, t = 7r-v and the fact 

that 

(17.5) K ^ V u , - v ) = K(A0>.«(u,v) 

show that (17.4) is equivalent to 
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(17.6) f u 2 ^ V - u ) 2 a + 1 d u < c a " P r i ^ T r - u ) ! ? ^ 1 ^ ^ ) ^ 1 / ^ - ? ^ 
JD0(a) J 0 

2( a) 

where D2(a) is the set where 

(17.7) sup 
n>0 

| K i A Q ) ' W ) g ( ^ v ) | d v > a u ^ 1 / 2 ( , - u ) Q + 1 / 2 -

Since g(7r—t) has support in [0,7r/2], inequality (17.6) follows from lemma (15.1). 

That (17.4) holds for general g follows from these two cases. 

The proof of theorem (1.2) is similar. Let G be the subset of [0,7r] such 

that cos t G H and let g(t) = XG(t)(sin t /2) a + 1 /2 (cos t / 2 ) ^ + 1 / 2 . Then E(a) 

is the set of values of cos s for s in the set D.(a) where (17.1) holds and 

the conclusion of theorem (1.2) is equivalent to (17.2). For suitable c, D.(a) is a 

subset of the set D(a) where (17.3) holds and it is sufficient to prove (17.4). If 

E C [0,1], then G C [0,7r/2] and (17.4) follows from lemma (16.1). If E c [-1,0] 

we again get (17.4) by changing variables and using lemma (16.1). As before, the 

general case follows from these two cases. 

For theorem (1.3) we let g(t) = f(cos t)(sin t /2) a + 1 / 2(cos t/2)^4"1 /2 and 

change variables in the conclusion to get 

?i;K!a '«'W)<it 
(sin s/2) "5+T72 (cos s/2)1 WTJT < c EteL 

(sin s/2) 

where || || is taken over [0,7r]. For f with support in [0,1] this follows 

from lemma (16.4). As before for f with support in [-1,0] a change of variables 

proves the result and the general case follows from the two special cases. 
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18. Norm estimates for p not between the critical values. From theorems 

(1.1)—(1.3) it follows that for p between the critical values 

II n (f,x)|| < c||f|| with c independent of n. For other values of p 

this is not true; we obtain upper bounds as a function of n in lemma (18.11). 

This lemma is the upper bound part of theorem (22.2). It is also needed to obtain 

the lower bound in §20. Throughout this section and §§20-22 we will use the 

notation 

(18.1) 

(18.2) 

and 

(18.3) G(n,p,0) = 

n (g\ - 2a+2 
p l ^ " a+ 0+3/2 

H") ~ a-0+1/2 

( n + 1 ) ( 2 a + 2 ) / p - ( a + 0 + 3 / 2 ) 

[ l o g ( n + l ) ] 1 / P 

1 

[ l o g ( n + l ) ] 1 / P ' 
( n + 1 ) ( « - « + l / 2 ) - ( 2 a + 2 ) / p 

1 

1 < p < p x ( 0 ) , 9 < a+1/2 

P = Pl(9), 9 < a + 1/2 

P l ( 0 ) < p < p 2 ( 0 ) , 0 < a+1/2 , 

p = p 2 (9) , 9 < a + 1/2 

p2{ 6) < p < a>, 9 < a+1/2 

1 < p< OD , 9 > a+1 /2 

Lemma (18.4). If a > - 1 , /? > - 1 , 7 = max(a^), 9 > 0 and 1 < p < 2, 

then 

rTTrrir/2 
("•«) 1 [f |K(^*(.,t)g(t)|dt]1,[.*+-1/2(lM1y»fi/2]^d 

is bounded by 

(18.6) :G(n,p^)P r / 2 | g ( t ) | P t(-+ 1 /2)(2-P)dt , 
J0 
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with c independent of n and g. 

To prove this let I :(s,t) denote the functions defined in the proof of 

lemma (15.1), and as in the proof of lemma (15.1), let H denote the integral in 

(18.6). We may assume that g(t) is nonnegative and that it is 0 outside 

[0,7r/2]. Because of (15.4) and (15.5) it is sufficient to show that 

(18-7) ^J o
T / \ . ( s , t )g ( t )d t pr<^Vs/+1/2i2~p ds 

is bounded by cG(n,p.0)pH for 1 < i < 11 and n > 1. 

Now (18.7) is bounded by (15.8). For i = 3, 8, 9 and 10, (15.8) was shown 

in the proof of lemma (15.1) to be bounded by cH for p = p-,(0), and these 

estimates are valid for 1 < p < 2. It is sufficient, therefore, to consider the cases 

i = 1, 2, 4, 5, 6, 7 and 11. 

For i = 1 (18.7) is bounded by 

f2/n r f7r/2 
n(2a+2)Pprp/>+i/2g(t)dt 

Jo [Jo 
2a+l ds. 

Now use (15.14) to estimate the inner integral and the estimate cH is immediate 

for this part. 

For i = 2 (18.7) is bounded by 

p ( ^ + 1 / 2 ) f 2 / n r f 7 r / 2 . x 

cn r 

JO [J2/11 
g(t)dt P s 2 " + 1 ds . 

Now evaluate the outer integral and use Holder's inequality on the inner integral to 

get the bound 

cnp(a-0+l/2)-2<>-2 H r r 7 r / 2
t ^ ^ - l / 2 - ( a + ^ + 3 / 2 ) / ( p - l ) d t l p - 1 

H 
LJ2/n 
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The exponent of t is less than - 1 ; evaluating the integral completes this part. 

For i = 4 we have 

IP n p ( ^ + l / 2 ) p ^ ^ p t a + l / 2 g ( t ) d t l P s 2 a + l - p ( a + ^ 3 / 2 ) d s 

The inner integral is estimated using (15.14) and the outer integral is computed 

directly. The result is cHG(n,p,0)p. 

For i = 5 (18.7) is bounded by the sum of 

(18.8) 

and 

(18.9) 

:n"P f 
J 

3TT/4 

2/n 

2/n "IP 
t a + 1 / 2 g ( t ) d t l P s 2 a + 1 - P ( 2 a + 3 ) d s 

n-P f3' /4f[ 
J 2 / n LJ 2/n 

a + 1 / 2 g ( t ) d t l P « 2 a + 1 - P ( 2 a + 3 ) ds 

For (18.8) use (15.14) on the inner integral and evaluate the outer integral to get 

an estimate of cH. For (18.9) since p > 1, the exponent of s is less than or 

equal to -2. Hardy's inequality then gives a bound of 

c f37r /4
n-Pg( t )P tP(«+l/2)+P+2a+l-p(2a+3)ds 

J2/n 

Replacing n~P by ft completes this part. 

For i = 6 we get 

(i8.io) C n -* f37r/4rrs/2
S(t)dtips2-+i-p(-+^3/2)ds. 

J4/n U2/n J 
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If p > Pi(#), the exponent of s is less than - 1 . Hardy's inequality then gives 

the bound 

r37r/4 
r gMP n ~ * t 2 " + 1 -P (a+0+ l /2 ) d t 

h/n 

Replacing n ^ by t ^ completes this case. 

by 

If 1 < P < Pi(#) use Holder's inequality to show that (18.10) is bounded 

n~*P r 3 * / 4 r r s / 2 t(< H .1 /2)(2-p)/(l-p)d tlP-1
g2a+l-p(»f ^3 /2 )^ ^ 

h/n U2/11 J 2/ 

The exponent of t is less than - 1 . The exponent of s is -1 if p = p-,(0) 

and greater than -1 if 1 < p < p-.(0). Computing the integrals completes this 

case. 

To estimate (18.7) with i = 7 let a be a number satisfying 

1/p < a < 1+1/p and a < 0+1/p. Applying Holder's inequality to the inner 

integral gives a bound of 

r7T rr2s 

' J 2 / n U s / 2 ( I + | s - t | ) a P 
dt 

r2s p-1 
^n,7(s^)]P ' [i + | s - t | ] a P ^ d t ] P " ^ ^ ^ ^ ( ^ d s 

s/2 

Substituting the value of I » we get a bound of 

enl-apf [f2S fi(t)P
 dtls(^l/2)(2-p)ds 
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Now interchange the order of the integration and compute the inner integral to 

complete this part. 

For i = 11 the procedure is similar to that used for the case i = 1 in 

the proof of lemma (15.1). In place of (15.19) we must show that 

n"*f min(l,nt)a+1/2g(t)<it < c G(n,pJ^)H1/p. 
J0 

The proof is like that of (15.19). We have (15.22) bounded by c G(n,p,^)H1/p for 

1 < p < 2. If p > a ? t " /3 , the exponent of t in (15.23) is bounded below by 

-1 and (15.23) has the bound c H 1 ^ . If p < Iqrjyaj, the integral in (15.23) 

can be evaluated to get the bound cG(n,p,0)H ' p . The rest of the proof is the 

same except that each estimate must be multiplied by G(n,p,0). 

Corollary (18.11). If a > 0 > -1 and 0 > 0, then 

| | ^ a ^ )^ ( f j X ) | | <cG(n,p,0)||f|| with c independent of f and n. 

For 1 < p < 2 this is done as in the proof of theorem (1.1) by splitting the 

integral defining cA a ' ^ ' (f,x) at 0, changing variables, using the fact that 

K^a>$>0(7r-u,7r-v) = K^ , a^ t f(u,v) and applying lemma (18.4). For p > 2 it 

follows from the case 1 < p < 2. by duality. 

19. A polynomial norm inequality. The main result of this section, lemma 

(19.4), is a modification of lemma 4b of [2]. Lemma (19.4) has a weak type p 

norm on the right in place of an ordinary p norm. The proof follows that given in 

[2] but a different interpolation theorem is needed to produce the weak type norm. 

This is lemma (19.1); its proof is like that for a simple case of the Marcinkiewicz 

interpolation theorem. 



CESARO SUMS OF JACOBI POLYNOMIALS 

Lemma (19.1). If a > - 1 , 0 > - 1 , T is a linear operator on L 

| with weigh 

1 < p < OD, then 

[-1,1] with weight (l-x)a(l+xf, HTfll̂  < Allfl^, ||Tf||m < B||f||m and 

HTfl^ <cA1/PB1/P' | |fi |pao 

with c independent of A, B, f and T. 

To prove this let a be positive, define 

ff(x) |f(x)| < a 

W = 

and let f^x) = f(x)-f (x). Then 

[0 |f(x)| > a 

HTfIL <- TOl + l l ^ l l . 

By the hypothesis the right side is bounded by 

Ba + A [ |f(x)|(l-x)Q(l+x)4ix 
|f(x)|>a 

00 

< Ba + A Y 2 n + 1 a f ( l -x^ f l+x^dx . 
n = 0 |f(x)|>2«a 

The right side is bounded by 

00 Ilf(x1llp 

Ba + A J 2 n + 1 a L L i % < B a + Aca^^x)^ . 
n : 0 (2"a)p " p ,m 

Taking a = A ' ^ B " 'p| |f(x)|| completes the proof of this lemma. 
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Lemma (19.2). If a > - 1 , /5 > - 1 , then there are positive integers r and 

N and linear operators T for L on [-1,1] with weight ( l -x) a ( l+x)^ such 

that for n > N T f is a polynomial of degree rn, T f = f if f is a 

polynomial of degree n, ||T f|| < c||f|| and ||T f)^ < cHf^ with c 

independent of n and f. 

This is a combination of theorem 1, p. 467 of [10], plus the fact that for 

0 > max(a,/?) + 1/2 we have | | ^ a ' ^ ( f , x ) | | < c||f(x)|| for p = 1 and 

p = OD. These norm inequalities are included in lemma (18.11). 

Lemma (19.3V If a > - 1 , 0 > - 1 , 7 = max(a,/?) > -1/2 and f(x) is an 

n degree polynomial, then 

||f(x)||m < c C n + l ) 2 ^ 2 ^ ! 

with c independent of n and f. 

To prove this we start with the fact that 

w "J. j i^Wa-yn^)^ Pi w 

By (4.3.3) of [13] and (2.5) we have 

£ c(k+l)7 | | f |L 

k=o ( k + 1 ) 

and the conclusion is immediate. 
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Lemma (19.4). If a > - 1 , 0 > - 1 , 7 = max(a,/?) > -1/2 1 < p < OD 

and h(x) is a polynomial of degree n, then 

HhMI^ < c(n+l)(2T+2)/P||h||pja) 

with c independent of h and n. 

Let r, N and T be as in lemma (19.2); we may assume n > N. By 

lemmas (19.3) and (19.2) 

||Tnf(x)||ffi < c ^ r + l ) 2 ^ 2 ^ ^ ) ^ < ^ n r + l ) 2 ^ 2 ^ ^ ^ 

and by lemma (19.2) 

IIV(x)|L < c||f(x)|L . 

Lemma (19.1) then shows that 

||Tnf(x)||ffi < c(n+l)(2T+2)/P||f(x)||p;0o 

for any f in L . Since T h(x) = h(x) for h a polynomial of degree n, we 

have the conclusion of the lemma. 

20. A lower bound for a norm of the kernel. The main result here is lemma 

(20.2) which gives a lower bound for | |L^ a ' ^ ' (l,x)|| . This along with lemma 

(19.4) will be used in §§21-22 to obtain lower bounds for the Lp norm of the 

operator a^a^^ . 
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Lemma (20.1). If a > (5 > - 1 , a > -1/2, 6 > 0 and 1 < p < *, then 

l |Li°-^ t f (M) | |p<cG(n >p' , t f ) (n+l)( 2* f 2 ) /P '> 

with c independent of n. 

By the converse of Holder's inequality 

n v 

The right side equals 

L i — , U „ p - ^ L (a , / ? )^ ( 1 ) X ) { ( x ) ( 1 _ x ) a ( 1 + x ) / ? d x 

sup ^ ' V . l ) ! < sup |ki^'*(f,x)|| 
=1 l . p , - II l i p / 

By lemma (19.4) the right side of this has the bound 

sup c ( n + l ) ( 2 Q + 2 ) / P ' | k ( ^ ) . V , x ) | | p , 
Pllp ,=l P ' 

for 1 < p < QD. If p = GD, this follows from lemma (19.3); for p = 1 it is 

trivial. Corollary (18.11) then completes the proof. 

(20.3) 

Lemma (20.2). If -1 < 0 < a, 0 < 6 < a+1/2 and 1 < p < p (0), then 

( n + 1 ) ( 2 a + 2 ) / P ' G ( n ) p ^ ) < C | | L ( ^ ) ^ ( 1 ) X ) | | 

with c independent of n. 

The proof is essentially that on pages 174-5 of [2] for the case a = ft and 

p = p (0). We use the fact from (9.41.13), p. 261 of [13], that L ^ a , ^ ( l , x ) 

equals the sum of 
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n _ n I r( g+l)r(n+o+/?+ g+2 ) Y { 2n+a+/?+ £+3 ) P ( a + W , / 3 ) M 

and 

2 a + ^" f l r (a+ l ) r (n+6>+l ) r (n+^4- l ) r (2n+a4-^+2^+3) n 

R = J A ( J ) L | > > ^ ( 1 , X ) , 

where 

A(j) - ( 1) (j) J J 2n+l + a+/?+2+0+i * 
i=l 

By use of (8.21.17), p. 197 of [13], and Stirling's formula we have 

r ( n + 1 )oH?+l/2 l < p < P l ( 0 ) 

"Q I IP " C W l ) ^ 1 / ^ n)1^ p = P i ( * ) • 

Using the definition (18.3) of G, we can write this as 

(20.4) ||Q||p >cG(n,p '0) (n+l) ( 2 Q + 2 ) /P \ 1 < p < P l(0). 

To estimate ||R|| we use the fact that 

L(^),*+J(1)X) = J ak jJ^0),9+l{ltX)> 

k=0 

where 

ak = 

fk+0+1] 
1 k | 

fn—k+j-2l 
1 n-k 1 

n+0+j] 
n 
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Since â  > 0 for j > 1 and ) a, = 1, we have by Minkowski's inequality 
k=l 

OD 

IIRII < I |A(j)| sup||LJ>^+\l,x)| | • p . ^ k<n K p 

Now since each factor in the product in the definition of A(j) has absolute value 

less than 1, we have |A.| < | ( - ) | . Since ) | ( . ) | converges for 6 > 0, we 

can use lemma (20.1) to get 

(20.5) ||R|| < c S U P | | L ( ^ ) ^ + 1 ( 1 , X ) | I < cG(n^ ^ l ) ( ^ l f a ^ ^ ' 
p k<n K p 

From the definition of G l im G(n,p',0+1)/G(n,p',0) = 0. Therefore, (20.4) and 
n->ao 

(20.5) imply (20.3) for sufficiently large n. Since | |L^ a ,^ ,* + 1 ( l ,x) | | > 0 for all 

n, adjusting c in (20.3) will make (20.3) true for all n. 

21. Some limitations of the basic results. Here we show that Tf(x) = 

sup| a^a'P" (f,x)| is not a weak type operator at the upper critical index p by 
n 

showing that sup \\a^^'ellx)\\ is an unbounded function of n. As a 
IWIp-i n p'° 

corollary we also get the fact that sup lk^ (XJ?>X)IL/IIXT?IID
 i s a n 

Ec[—1,1] 

unbounded function of n if p is the lower critical index. It follows from this 

that T is not a restricted strong type operator for this value of p. The question 

of whether T is restricted strong type at the upper critical index is not resolved 

here. At the end of this section we do show, however, that this cannot be decided 

using our upper bounds for the kernel. The basic result for this section is the 

following theorem. 
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Theorem (21.1). If a > - 1 , 0 > - 1 , 7 = max(a,/?) > -1/2, 0 < 9 < 7+I/2 

and p = (27+2)/(r-#+l/2), then 

sup \\a[^\x)\\ > c(log n ) 1 ^ ' 

with c > 0 and independent of n. If 9 = 7+1/2, sup | |cj(a '^(f>x)| | 
II i 1 QQ 

> c log n. 

To prove this we use lemma (20.2) to get 

(log n ) 1 / ? ' < c ( n + i ) - ( 2 T + 2 ) / p | | L ^ J / ? ) ^ ( l x ) | | p ^ 

By the converse of Holder's inequality the right side equals 

c ( n + l ) - ( 2 7 + 2 ) / p sup \\\(a>®>e(l,x){(x)(l-x)a(l+xfdx 

\\%=vU 
which equals 

c ( n + l ) - ( 2 ^ 2 ) / P sup_ k n ^ ) ^ ( f , l ) | . 

This completes the proof if 9 = 7+1/2. If 9 < 7+1/2, then since <r n
a ' ^ ( f ,x ) 

is a polynomial of degree n, lemma (19.4) shows this is bounded by 

= i J c nsup jkn
a^'"(f,x)nPjff l 

„ IIp 

This completes the proof of theorem (21.1). 

Theorem (21.2). If a > - 1 , 0 > - 1 , 7 = max(a,/3) > -1/2, 0 < 9 < 7+1/2 

and p = (27+2)/(7+0+3/2), then 
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jup l ^ - ' ( x P . ) l p > 1/p 

EC[-1,1] llxEllp 

with c > 0 and independent of n. If 9 = 7+1/2, then 

sup ||a.(a./9),^fjX)|| > c i0g n. 
11% = ! 

For 9 < 7+1/2 this follows from theorem (21.1) by the following duality 

argument. The left side of (21.3) equals 

l j l l fW4 a ^ ) , ( ? (X E > x)( l -x) a ( l+x)^dx | 
sup sup 

This is 

EC[-1,1] | | f | |p ,=l IIXEllp 

I \\x^)cr[a'^e{ i,x)(l-xf(l+xfdx\ 
(21.4) sup sup 

| | f | | p ,=l EC[-1,1] ||xEHp 

By theorem (21.1) we can, given n, choose g with ||g|| = 1 and 

(21.5) | k ( a ' ^ ( g l x ) | | p > > c(log n)1/? 

with c independent of n. With the notation 

ME) = f (l-x)a(l+x)/5dx 
'E 

we see from (21.5) that there is an a > 0 such that if A is the set where 

| f f(a '0)'*(g,x)| > a, then aP'^A) > c(log n ) p ' / p . Let Aj be the subset of A 

where a[a'^'8{g,x) > 0 and let A2 = A n Aj. If /^Aj) > /i(A)/2, let 

D = Ap otherwise let D = A^ Then apV(D) > c(log n ) p ' / p and 

(21.6) a >cMD) - 1 /p ' ( log n ) 1 ^ . 



CESARO SUMS OF JACOBI POLYNOMIALS 87 

Replacing f by g and E by D, we see that (21.4) is bounded below 

by 

/ W x ) a ( l - X ) a ( l + x / d x 
rw MD)]J 

Using (21.6) to replace a then completes the proof of theorem (21.2) for 

9 < 7+1/2. For 9 = 7+1/2 a standard duality argument proves the result from 

theorem (21.1). 

Now we will show, as mentioned at the beginning of this section, that the 

upper bounds for the kernel obtained in this paper cannot be used to show that 

Tf(x) = sup|<r^ ' ^ ' (f,x)| is strong restricted type at the upper critical index. 
n 

To do this we change variables to show that T being of restricted strong type is 

equivalent to the statement that for any subset E of [0,7r] 

f* suplf K(Q ' /Ms,t)(sin t / 2 ) a + 1 / 2 ( c o s t / 2 / + 1 / 2 d t 
Jo n UF, n 

is bounded by 

x [(sin s/2)a + 1 /2(cos s /2^+ 1 / 2]2-Pds 

f (sin s/2)2a+1(cos s / 2 ) 2 / m ds . 

If this could be proved from our upper bounds for a > /?, we would have 

TT/2 7r/4r 

0 7 *[2/n,WS) l2s W'' t) t a f l /VHP ' ( t t f l / 2 ) ( S H , ) d ' H s 2 a + 1 ds 
E 

for any subset E of [0,7r/2] where I g is the function used in the proof of 
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lemma (15.1). Taking E = [71-/4,71-/2], substituting the value of t Q and reducing 

the interval of integration for the outer integral we would have 

i: / 8[T^/n,/4,«"-90^1 /HP '< < > + 1 / 2 , < 2-P ,-<-
The supremum is attained at the least n satisfying n > 2/s. Using this fact and 

performing the inner integration, we see that the integral on the left is bounded 
f7T/8 

below by c ds/s. This contradiction completes the demonstration that our upper 

bounds are not sufficient for this problem. Since our upper bound can easily be 

shown to be as small as possible for certain simple cases such as a = /? = 1/2, 

another approach is needed. Presumably, an asymptotic expansion for the kernel 

could be used for this purpose. 

22. Growth of Cesaro means. We obtain here the exact growth rate of the 

Lp norm of the Cesaro mean operator for p outside the critical region. Gorlich 

and Markett obtained the following result in [8]. 

Theorem (22.1). If a > 0 > -1/2 and 0 < 0 < a+1/2, then 

7(<*,/J)A 
n "p 

p ( n ) n(2a+2)/p-(2a+3)/2-0 i P 6 [ 1 > P i ] 

[B(n) n(2*+l)/2-(2a+2)/p-0 , p 6 [ p 2 , m ] 

where | | cn a ' ^ ' || denotes the operator norm from Lp to L p 

p = (4a+4)/(2a+3+20), p 2 = (4a+4)/(2a+l-20) and for any t > 0, 

l im n_tB(n) = 0. 
n->GD 

They also obtained lower bounds for ||cr ' ^ ' || of the same form except 

that B(n) was replaced by a constant. We will prove the following result. 
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Theorem (22.2). If a > /? > - 1 , 1 < p < QD and 0 > 0, then there is a 

constant c such that G(n,p,0) < c\\a^a^y \\ < c G(n,p,0), where G is as 

defined in (18.3). 

The second inequality was proved in corollary (18.11). In the regions where 

G(n,p,0) = 1 the first inequaltiy follows immediately by taking f(x) = 1 since 

then a ^ 0 ^ ' (f,x) = 1 for all n and 0. The result for 1 < p < pJ0) is the 

dual of the result for p2(#) < P < & ; therefore it is sufficient to consider the case 

p2(#) < P < a and 0 < 0 < a+1/2. To prove the lower bound for this case use 

lemma (20.2) to get 

G(n,p,#) < c (n + l ) - ( 2 "+ 2 ) /P | |L ( a >^( l ,x ) | | p , . 

The right side equals 

c ( n + i r < 2 a + 2 ) / P sup k ( a ^ > V , l ) l -
l|f||p=l 

For p < ao we use lemma (19.4) and the fact that ||h|| < ||h|| to get the 

bound 

c n s
{ ; p

= 1
| l < T n a , / ? ) , ^ x ) | | p ; 

for p = OD this bound is trivial. This completes the proof. 



References 

1. K. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with 
applications to Hilbert transforms and maximal functions, Studia Math. 72 
(1982), 9-26. 

2. R. Askey and I.I. Hirschman, Jr., Mean summability for ultraspherical 
polynomials, Math. Scand. 12 (1963), 167-177. 

3. R. Askey and S. Wainger, A convolution structure for Jacobi series, Amer. J. 
Math., 91 (1969), 463-485. 

4. A Bonami and J-L. Clerc, Sommes de Cesaro et multiplicateurs des 
developpements en harmoniques spheriques, Trans. Amer. Math. Soc. 183 (1973), 
223-263. 

5. S. Chanillo and B. Muckenhoupt, Weak type estimates for Bochner-Riesz 
spherical summation multipliers, Trans. Amer. Math. Soc. 294 (1986), 693-703. 

6. G. Darboux, Memoirs sur 1'approximation des functions de tres-grandes nombres 
et sur une classe etendue de developpements en series, J. de Math. (3), vol. 4 
(1878), 5-56, 377-416. 

7. J. Gilbert, Maximal theorems for some orthogonal series I, Trans. Amer. Math. 
Soc. 145 (1969), 495-515. 

8. E. Gorlich and C. Markett, On a relation between the norms of Cesaro means 
of Jacobi expansions, in Linear Spaces and Approximation, P.L. Butzer and B. 
Sz.-Nagy, editors, Birkhauser Verlag, Basel, 1978, 251-262. 

9. B. Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi 
series, Mem. Amer. Math. Soc. 64 (1986), No. 356. 

10. E. Stein, Interpolation in polynomial classes and Markoff's inequality, Duke 
Math. J. 24 (1957), 467-476. 

11. , Singular Integrals and Differentiability Properties of Functions, 
Princeton Univ. Press, Princeton, N.J., 1970. 

12. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, 
Princeton Univ. Press, Princeton, N.J., 1971. 

13. G.Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, 
Fourth Edition, Amer. Math. Soc, Providence, R.I., 1975. 

14. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 
Orlando, Fla., 1986. 

Mathematics Department 
Rutgers University 
New Brunswick, NJ 08903 

90 



Editorial Information 

To be published in the Memoirs, a paper must be correct, new, nontrivial, 
and significant. Further, it must be well written and of interest to a substantial 
number of mathematicians. Piecemeal results, such as an inconclusive step 
toward an unproved major theorem or a minor variation on a known result, 
are in general not acceptable for publication. Transactions Editors shall solicit 
and encourage publication of worthy papers. Papers appearing in Memoirs are 
generally longer than those appearing in Transactions with which it shares an 
editorial committee. 

As of January 1, 1993, the backlog for this journal was approximately 7 
volumes. This estimate is the result of dividing the number of manuscripts for 
this journal in the Providence office that have not yet gone to the printer on the 
above date by the average number of monographs per volume over the previous 
twelve months, reduced by the number of issues published in four months (the 
time necessary for preparing an issue for the printer). (There are 6 volumes per 
year, each containing at least 4 numbers.) 

A Copyright Transfer Agreement is required before a paper will be published 
in this journal. By submitting a paper to this journal, authors certify that the 
manuscript has not been submitted to nor is it under consideration for publi
cation by another journal, conference proceedings, or similar publication. 

Information for Authors 
Memoirs are printed by photo-offset from camera copy fully prepared by 

the author. This means that the finished book will look exactly like the copy 
submitted. 

The paper must contain a descriptive title and an abstract that summarizes 
the article in language suitable for workers in the general field (algebra, analy
sis, etc.). The descriptive title should be short, but informative; useless or vague 
phrases such as "some remarks about" or "concerning" should be avoided. The 
abstract should be at least one complete sentence, and at most 300 words. In
cluded with the footnotes to the paper, there should be the 1991 Mathematics 
Subject Classification representing the primary and secondary subjects of the 
article. This may be followed by a list of key words and phrases describing the 
subject matter of the article and taken from it. A list of the numbers may be 
found in the annual index of Mathematical Reviews, published with the Decem
ber issue starting in 1990, as well as from the electronic service e-MATH [telnet 
e-MATH.ams.org (or telnet 130.44.1.100). Login and password are e-math]. For 
journal abbreviations used in bibliographies, see the list of serials in the latest 
Mathematical Reviews annual index. When the manuscript is submitted, au
thors should supply the editor with electronic addresses if available. These will 
be printed after the postal address at the end of each article. 

Electronically-prepared manuscripts. The AMS encourages submission of 
electronically-prepared manuscripts in A^f&T^K or Afr&-1£TjdL. To this end, 
the Society has prepared "preprint" style files, specifically the amsppt style of 
.AA^S-TEX and the amsart style of AMS-T£FEX, which will simplify the work of 
authors and of the production staff. Those authors who make use of these style 
files from the beginning of the writing process will further reduce their own 
effort. 



Guidelines for Preparing Electronic Manuscripts provide additional assistance 
and are available for use with either AMS-^EX or ^ M ^ - ^ E X . Authors with 
FTP access may obtain these Guidelines from the Society's Internet node 
e-MATH.ams.org (130.44.1.100). For those without FTP access they can be 
obtained free of charge from the e-mail address guide-elec@math.ams.org (In
ternet) or from the Publications Department, P. O. Box 6248, Providence, RI 
02940-6248. When requesting Guidelines please specify which version you want. 

Electronic manuscripts should be sent to the Providence office only after 
the paper has been accepted for publication. Please send electronically pre
pared manuscript files via e-mail to pub-submit@math.ams.org (Internet) or on 
diskettes to the Publications Department address listed above. When submit
ting electronic manuscripts please be sure to include a message indicating in 
which publication the paper has been accepted. 

For papers not prepared electronically, model paper may be obtained free of 
charge from the Editorial Department at the address below. 

Two copies of the paper should be sent directly to the appropriate Editor and 
the author should keep one copy. At that time authors should indicate if the 
paper has been prepared using .A^S-TEX o r AMS-HTYX.. The Guide for Authors 
of Memoirs gives detailed information on preparing papers for Memoirs and 
may be obtained free of charge from AMS, Editorial Department, P. O. Box 
6248, Providence, RI 02940-6248. The Manual for Authors of Mathematical 
Papers should be consulted for symbols and style conventions. The Manual may 
be obtained free of charge from the e-mail address cust-serv@math.ams.org or 
from the Customer Services Department, at the address above. 

Any inquiries concerning a paper that has been accepted for publication 
should be sent directly to the Editorial Department, American Mathematical 
Society, P. O. Box 6248, Providence, RI 02940-6248. 



Editors 

This journal is designed particularly for long research papers (and groups of 
cognate papers) in pure and applied mathematics. Papers intended for publica
tion in the Memoirs should be addressed to one of the following editors: 

Ordinary differential equations, partial differential equations, and applied math
ematics to JOHN MALLET-PARET, Division of Applied Mathematics, Brown 
University, Providence, RI 02912-9000 

Harmonic analysis, representation theory and Lie theory to AVNER D. ASH, 
Department of Mathematics, The Ohio State University, 231 West 18th Avenue, 
Columbus, OH 43210 

Abstract analysis to MASAMICHITAKESAKI, Department of Mathematics, 
University of California at Los Angeles, Los Angeles, CA 90024 

Real and harmonic analysis to DAVID JERISON, Department of Mathemat
ics, M.I.T., Rm 2-180, Cambridge, MA 02139 

Algebra and algebraic geometry to JUDITH D. SALLY, Department of Math
ematics, Northwestern University, Evanston, IL 60208 

Geometric topology, hyperbolic geometry, infinite group theory, and general 
topology to PETER SHALEN, Department of Mathematics, Statistics, and Com
puter Science, University of Illinois at Chicago, Chicago, IL 60680 

Algebraic topology and differential topology to MARK MAHOWALD, Depart
ment of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, 
IL 60208-2730. 

Global analysis and differential geometry to ROBERT L. BRYANT, Depart
ment of Mathematics, Duke University, Durham, NC 27706-7706 

Probability and statistics to RICHARD DURRETT, Department of Mathe
matics, Cornell University, Ithaca, NY 14853-7901 

Combinatorics and Lie theory to PHILIP J. HANLON, Department of Math
ematics, University of Michigan, Ann Arbor, MI 48109-1003 

Logic, set theory, general topology and universal algebra to JAMES E. BAUM-
GARTNER, Department of Mathematics, Dartmouth College, Hanover, NH 
03755 

Algebraic number theory, analytic number theory, and automorphic forms to 
WEN-CHING WINNIE LI, Department of Mathematics, Pennsylvania State 
University, University Park, PA 16802-6401 

Complex analysis and nonlinear partial differential equations to SUN-YUNG 
A. CHANG, Department of Mathematics, University of California at Los An
geles, Los Angeles, CA 90024 

All other communications to the editors should be addressed to the Managing 
Editor, JAMES E. BAUMGARTNER, Department of Mathematics, Dartmouth 
College, Hanover, NH 03755. 



This page intentionally left blank



Recent Titles in This Series 
(Continued from the front of this publication) 

455 Mark G. Davidson, Thomas J. Enright and Ronald J. Stanke, Differential operators and 
highest weight representations, 1991 

454 Donald A. Dawson and Edwin A. Perkins, Historical processes, 1991 
453 Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary 

subdivision, 1991 
452 Brian S. Thomson, Derivates of interval functions, 1991 
451 RolfSchon, Effective algebraic topology, 1991 
450 Ernst Dieterich, Solution of a non-domestic tame classification problem from integral 

representation theory of finite groups (A = RC^,v(3) = 4), 1991 
449 Michael Slack, A classification theorem for homotopy commutative H-spaces with 

finitely generated mod 2 cohomology rings, 1991 
448 Norman Levenberg and Hiroshi Yamaguchi, The metric induced by the Robin function, 

1991 
447 Joseph Zaks, No nine neighborly tetrahedra exist, 1991 
446 Gary R. Lawlor, A sufficient criterion for a cone to be area-minimizing, 1991 
445 S. Argyros, M. Lambrou, and W. E. Longstaff, Atomic Boolean subspace lattices and 

applications to the theory of bases, 1991 
444 Haruo Tsukada, String path integral realization of vertex operator algebras, 1991 
443 D. J. Benson and F. R. Cohen, Mapping class groups of low genus and their 

cohomology, 1991 
442 Rodolfo H. Torres, Boundedness results for operators with singular kernels on 

distribution spaces, 1991 
441 Gary M. Seitz, Maximal subgroups of exceptional algebraic groups, 1991 
440 Bjorn Jawerth and Mario Milman, Extrapolation theory with applications, 1991 
439 Brian Parshall and Jian-pan Wang, Quantum linear groups, 1991 
438 Angelo Felice Lopez, Noether-Lefschetz theory and the Picard group of projective 

surfaces, 1991 
437 Dennis A. Hejhal, Regular ^-groups, degenerating Riemann surfaces, and spectral 

theory, 1990 
436 J. E. Marsden, R. Montgomery, and T. Ratiu, Reduction, symmetry, and phase 

mechanics, 1990 
435 Aloys Krieg, Hecke algebras, 1990 
434 Francois Treves, Homotopy formulas in the tangential Cauchy-Riemann complex, 1990 
433 Boris Youssin, Newton polyhedra without coordinates Newton polyhedra of ideals, 

1990 
432 M. W. Liebeck, C. E. Praeger, and J. Saxl, The maximal factorizations of the finite 

simple groups and their automorphism groups, 1990 
431 Thomas G. Goodwillie, A multiple disjunction lemma for smooth concordance 

embeddings, 1990 
430 G. M. Benkart, D. J. Britten, and F. W. Lemire, Stability in modules for classical Lie 

algebras: A constructive approach, 1990 
429 Etsuko Bannai, Positive definite unimodular lattices with trivial automorphism groups, 

1990 
428 Loren N. Argabright and Jesus Gil de Lamadrid, Almost periodic measures, 1990 
427 Tim D. Cochran, Derivatives of links: Milnor's concordance invariants and Massey's 

products, 1990 (See the AMS catalog for earlier titles) 




	Table of Contents
	§ 1. Introduction
	§ 2. Facts and definitions
	§ 3. An absolute value estimate for 3(1�y) ≤ 2(1�x)
	§ 4. A basic estimate for 3(1�y) ≤ 2(1�x)
	§ 5. A kernel estimate for 3(1�y) ≤ 2(1�x) and �1 ≤ θ ≤ 0
	§ 6. A reduction lemma
	§ 7. A kernel estimate for 3(1�y) ≤ 2(1�x) and 0 ≥ �1
	§ 8. A Cesaro kernel estimate for t ≤ s/2
	§ 9. A basic estimate for separated arguments
	§10. A reduction lemma for separated arguments
	§11. A kernel estimate for separated arguments
	§12. Cesaro kernel estimate for t ≤ s � b
	§13. Cesaro kernel estimate for s near t
	§14. Kernel estimates
	§15. A weak type lemma
	§16. Lemmas for the upper critical value
	§17. Proofs of theorems (1.1) – (1.3)
	§18. Norm estimates for p not between the critical values
	§19. A polynomial norm inequality
	§20. A lower bound for a norm of the kernel
	§21. Some limitations of the basic results
	§22. Growth of Cesaro means
	§23. References

